
Department of Computer Science

On Tour: Harnessing Social Tourism Data
for City and Point-of-Interest

Recommendation

Thomas David Bewley

September 2019 | CSMSC-19

A dissertation submitted to the University of Bristol in accordance with the requirements of
the degree of Master of Science in the Faculty of Engineering

Declaration:
This dissertation is submitted to the University of Bristol in accordance with the requirements of
the degree of Master of Science in the Faculty of Engineering. It has not been submitted for any
other degree or diploma of any examining body. Except where specifically acknowledged, it is all
the work of the Author.

Thomas David Bewley, September 2019

Executive Summary

Tourism is a favoured activity for millions worldwide, with cities being a popular des-

tination type. For a group of travellers with divergent preferences, the choice between

many candidate cities and within-city points of interest (POIs) may be daunting. Rec-

ommender systems can support such decision making, informed by knowledge of tourists’

preferences and previous travel history. In this project, I develop a variety of data-driven

models for the ranking of candidate city destinations and POIs. The models are imple-

mented with a novel dataset of 1.3 million POI visits across 200 cities, which I construct

from the Flickr YFCC100M dataset of photo metadata in concert with OpenStreetMap.

I propose three models for city recommendation based on collaborative filtering,

content-based relation of candidate cities to those already visited, and matching of cities

to tourist’s preference distributions. I also investigate two methods for aggregating the

group’s diverse preferences. For POI recommendation I consider only a single target

tourist, and frame the problem is that of ranking POIs to visit at a designated time dur-

ing an ongoing city holiday. I develop six numerical features to quantify the suitability of

candidate POIs based on overall popularity, the target tourist’s known preferences, con-

textual factors (location, time and date) and historic correlations with previously-visited

POIs. I investigate three methods for mapping features into recommendation scores:

simple summation, linear regression and a feedforward neural network.

In cross-validation experiments I assess the models’ ability to predict tourists’ true

travel decisions. For city recommendation, the collaborative filtering model performs

strongest by a wide margin, and performance further improves as the group size is in-

creased. For POI recommendation, even the simple summation of features proves highly

effective, though small gains can be attained by using a neural network for scoring. On

both problems, all of my models outperform a variety of more näıve baselines.

The key contributions of this project are as follows:

• Concept: A recommender system that uses the same social dataset, and many of

the same derived features, to perform both city- and POI-level recommendation.

• Dataset: A novel dataset of travel histories synthesised from Flickr and Open-

StreetMap data, larger than any similar set that could be found in existing work.

• Models: Several simple collaborative filtering and content-based approaches to the

city recommendation problem. For POI recommendation, a selection of preference-

and context-sensitive features for quantifying POI suitability, which can be mapped

into a single score for ranking.

• Results: Consistent baseline-beating performance on cross-validation experiments.

The complete working directory for this project can be found here (expires 05/12/19),

and a GitHub repository containing only the essential data and scripts is available here.

3

https://uob-my.sharepoint.com/:f:/g/personal/tb14344_bristol_ac_uk/ElsSCH8kijNFiwOmdgt4vMABX2EAZLDtCK7gfy7pn06QKQ?e=Wy7wI5
https://github.com/tombewley/OnTour-TourismRecommendation

Acknowledgements

I would like to thank my supervisors Iván Palomares Carrascosa and Ercan Ezin

for their support and guidance throughout this project, as well as Rui Ponte Costa for

his feedback on an earlier draft of this thesis, and numerous fellow students and friends,

whose helpful contributions to discussions of my ideas have helped to clarify my thinking.

Extra special thanks also go to my family and girlfriend Tash, all of whom have shown

boundless care and understanding, and may now be wary of ever holidaying again for

fear of unsolicited point-of-interest recommendations.

4

Contents

1 Introduction 8

1.1 Aims and Objectives . 9

2 Background and Context 10

2.0.1 Recommender System Basics . 10

2.0.2 Types of Recommender System 11

2.0.3 Recommendation for Groups . 13

2.0.4 Recommendation for Tourism . 14

2.1 Flickr Data for Tourism Recommendation 16

2.2 Summary of Implications . 18

3 Overview of Recommendation Models 19

3.1 City Recommendation . 19

3.1.1 Notation . 19

3.1.2 Problem Definition . 21

3.1.3 Ranking by Tourist-Tourist Similarity 21

3.1.4 Ranking by City-City Similarity 22

3.1.5 Ranking by Tourist-City Similarity 23

3.1.6 Extension to Multi-Tourist Groups 23

3.2 Point-of-interest Recommendation . 24

3.2.1 Notation . 25

3.2.2 Problem Definition . 26

3.2.3 Model Components . 27

3.2.4 Overall Popularity Feature . 27

3.2.5 Preference-aware Feature . 28

3.2.6 Context-aware Features . 28

3.2.7 History-aware Feature . 31

3.2.8 Scoring Methods . 32

3.2.9 Extension to Multi-Tourist Groups 33

5

4 Creation of Travel Histories Dataset 34

4.1 YFCC100M and OpenStreetMap . 34

4.2 Implementation Notes . 35

4.3 Data Preprocessing . 35

4.4 Visit Creation and Labelling . 36

4.4.1 Grouping Photos into Visits . 36

4.4.2 Obtaining POIs from OpenStreetMap 37

4.4.3 Labelling Visits with POIs . 38

4.5 Label Bootstrapping via Word Likelihood Ratios 39

4.6 Final Dataset . 41

4.7 Data Quality Assessment . 43

4.7.1 Manual Inspection . 43

4.7.2 Statistical Properties . 45

4.7.3 Comparison to Existing Dataset 50

5 Application of Models to Dataset 52

5.1 Implementation Notes . 52

5.2 Construction of Data Structures . 52

5.2.1 City Recommendation . 52

5.2.2 POI Recommendation . 54

5.2.3 Algorithmisation of Models . 55

5.2.4 City Recommendation . 55

5.2.5 POI Recommendation . 58

6 Evaluation and Optimisation Methods 61

6.1 Evaluation Methods . 61

6.1.1 City Recommendation . 61

6.1.2 POI Recommendation . 62

6.2 Optimisation of Machine Learning Models for POI Scoring 64

7 Results and Discussion 67

7.1 City Recommendation . 67

7.1.1 Single-Tourist Results . 67

7.1.2 Group Results . 71

7.1.3 Summary of Findings . 76

7.2 POI Recommendation . 77

7.2.1 Optimisation Process . 77

7.2.2 Performance Comparison . 80

7.2.3 Correlation Analysis . 81

7.2.4 Performance Patterns . 83

6

7.2.5 Summary of Findings . 85

8 Conclusion 87

8.1 Summary of Outcomes . 87

8.2 Summary of Contributions . 89

8.3 Areas for Improvement and Future Work 89

7

Chapter 1

Introduction

Tourism is a popular activity for many millions of people worldwide. In 2017, 1.33 billion

international tourist visits were recorded, generating around US$1,340 billion in receipts

[1]. Over half of these visits took place in Europe, where city breaks are a common

form of holiday, especially in ancient cultural centres such as London, Paris, Rome and

Barcelona. For a group of prospective travellers, the challenge of choosing satisfactorily

between the many potential city destinations can be a daunting one, particularly when

their opinions and preferences diverge. In addition, when the group arrives in a new city,

they face countless decisions about which points-of-interest (POIs) to visit, from bars and

cafés to museums and natural sights, and in what order.

Modern computational technologies, enabled by the vast quantity of data available

on the World Wide Web, are capable of assisting travellers in these decision making pro-

cesses. In the existing literature, a range of recommender systems have been developed to

suggest both high-level destinations and specific POIs to individuals and groups, informed

their explicitly- or implicitly-defined preferences and the experiences of past visitors. An

increasing proportion of these operate by exploiting trends in large social datasets, such as

those provided by the Flickr photo sharing platform. However, the reported results have

been limited to only a small number of target cities, and have concerned only POI rec-

ommendation alone. No attempt has yet been made to perform both city- and POI-level

recommendation using the same underlying dataset. In addition, relatively little effort

has been dedicated to developing robust techniques for inferring accurate travel histories

from the raw social data, and the accuracy of the derived datasets has not been ques-

tioned or investigated. In this project, a variety of recommender systems are designed,

built and evaluated that build upon the successes of past tourism recommendation tools,

and address each of the above previously-underexplored areas.

8

1.1 Aims and Objectives

The overall aim of this project is to develop a set of recommendation tools to assist groups

of travellers in the planning of city holidays, using both personalised data and population-

wide statistics from a novel dataset of travel histories. This dataset is constructed by

combining data from OpenStreetMap with that from YFCC100M, the world’s largest

publicly-available media collection, which features accurate time and location tags for

tens of millions of photos uploaded to the Flickr photo sharing platform. Two specific

problems are addressed: city recommendation for groups of travellers, and within-city

POI recommendation for a single traveller. In both cases, the output is a ranking of all

available options, from most- to least-recommended.

This thesis is organised to correspond with the following list of project objectives:

• Understand a broad range of techniques for both individual and group recommen-

dation, especially those previously applied in the tourism context.

• Formalise the city recommendation problem for both the single-tourist and group

case, and develop a selection of simple models for solving it using both collaborative

filtering and content-based techniques.

• Formalise the POI recommendation problem for the single-tourist case, and develop

a single hybrid model for solving it, that extracts a number of context-sensitive

features of a candidate POI and aggregates them into an overall score.

• Design and implement a pipeline for augmenting the YFCC100M dataset with

information from OpenStreetMap to create a dataset of POI-level travel histories,

and thoroughly verify the accuracy of this dataset.

• Implement all models for use specifically with the travel histories dataset. For the

POI recommendation model, this involves training a number of machine learning

models.

• Evaluate all models by cross-validating against unseen travel experiences from the

dataset, with the aim of predicting tourists’ true decisions. Identify the best-

performing variants and investigate areas of strength and weakness.

The added value of this project is twofold. Firstly, the novel two-part system (both

city and POI recommendation) lays the foundations for an end-to-end solution for travel

planning, from initial destination selection to flexible, real-time decision making during

the trip itself. Secondly, and independently of the success of the recommender models

themselves, the derived Flickr -OpenStreetMap dataset of travel histories is larger than

any produced as part of prior work, and has the potential to provide a new depth of

insight into real-world tourism patterns in future.

9

Chapter 2

Background and Context

This project concerns the development of both group and single-user recommender sys-

tems for application in the tourism domain, which harness data from social media to

infer both individual preferences and population-wide trends. In this chapter, I present

an overview of the core concepts underlying the approach, and existing work published

in this space.

2.0.1 Recommender System Basics

A recommender system is a decision support system that assists a user in the selection of

objects, actions or experiences (generically called items) from a large space of possibilities,

usually by inferring something about their relevant preferences or needs [2]. Because the

user must engage with the system to provide such information, and almost always has

the final say on whether real-world action is taken as a result of the items selected, the

recommendation process can be viewed as a collaborative effort between user and software

[3]. The final output of the system may be a single recommended item, a shortlist, or a

complete ranking of all items from most- to least-recommended. The latter output is the

most general, since the others can readily be derived from it. Recommender systems are

accepted as a mature and effective technology in many industries, and are employed by

technology companies to suggest music [4], videos [5] and products [6] to users browsing

online platforms, curate social network news feeds [7] and assist in romantic matchmaking

[8], among many other applications. Their importance is destined to only grow in an age

of increasing information overload, as a solution to the ‘paradox of choice’ problem.

A core conceptual component of most personalised recommender systems, which may

or may not be instantiated as a tangible data structure, is the user-item ratings matrix m,

which has a row for each user u and a column for each item i [2]. In the most general terms,

the value mu,i reflects the utility of i for u. Depending on the kind of recommendation

algorithm, the matrix is used in various ways, and in concert with various other sources

of information, to inform the choice of items to recommend. As users participate in the

10

system, consuming or engaging with some of the available items, they may voluntarily

offer feedback on their experiences by providing scores or reviews – in this case, ratings

are said to be obtained explicitly and can be entered directly into the matrix. However,

in many contexts users may not be willing or able to provide explicit feedback, so ratings

must be inferred from implicit data such as the number of discrete interactions with an

item (e.g. mouse clicks) or the time spent viewing it [9]. The construction of reliable

ratings from implicit data is generally far more difficult, and the producers of advanced

recommender systems, such as those at the heart of modern social networks, are typically

incentivised to collect ever more data about their customers to inform highly complex

preference models. Another key challenge for recommender systems is the cold-start

problem, which arises whenever a new user joins the system and there is a scarcity of

information about their preferences [10]. Many of the most innovative developments in

recommendation algorithms seek to mitigate this problem.

2.0.2 Types of Recommender System

Recommendation algorithms can be categorised into a number of basic types, each of

which views the task of selecting items to recommend from a unique perspective and

harnesses a particular set of information about the populations of users and items.

Collaborative Filtering

Collaborative filtering seeks to simulate the effect of word-of-mouth promotion within a

population of users [3]. By default, according to the preceding definition, a user-item

ratings matrix only contains non-zero values for the small fraction of items that each user

has already interacted with, and is entirely uninformative with respect to any unseen

items. Choosing between these unseen items is usually the target of recommendation,

and to enable this the remaining cells in the matrix must be populated. A collaborative

filtering algorithm solves this problem by identifying other users in the population with

a similar set of existing ratings to the target user (often called the neighbourhood), and

applying the assumption that their preferences will continue to align in future. As a basic

example: if two users Alice and Bob have both given item x a high rating and item y

a low rating, and Alice has also given a third item z a high rating, then a collaborative

filtering algorithm would assume that Bob will do the same, and in turn may be likely

to recommend z to Bob in future. Many valid metrics exist for quantifying the similarity

between two users’ sets of ratings, with the Pearson correlation coefficient being the most

widely used [2]. The choice of neighbourhood size is also an important consideration.

Too small, and the outcome may be too sparse or statistically insignificant; too large,

and the degree of personalisation and relevance is reduced.

11

Content-based Recommendation

Whereas collaborative filtering requires no semantic knowledge about items, content-

based recommendation works by assigning keywords to items and modelling each user’s

preferences with respect to those keywords [11]. In their purest form, content-based

methods do not incorporate any consideration of the actions of other users within the

system. By relating new items to previously-consumed ones in terms of their keywords,

predictions can be made about the user’s likely ratings of them. A major challenge of

content-based recommendation is that users still rate on an item-by-item basis, and it can

be difficult to disentangle preferences over keywords from the highly specific features of

individual items, especially when the keywords themselves are ambiguous or subjective.

In addition, for a large population of items it may be very labour-intensive to manually

label every item with its associated set of keywords.

Constraint-based recommendation

Constraint-based recommendation requires an even deeper semantic knowledge about the

set of items, with each being assigned a number of properties and parameters. During the

search, enquiry or browsing process, the user may manually specify their requirements

(e.g. price, category, features) which are represented as constraints to screen out some

proportion of the available items [12]. Alternatively, the requirements themselves might

be inferred from the user’s past behaviour, although this is a risky strategy unless a high

degree of certainty exists. Those items that remain after filtering are ranked by some

measure of utility or relevance, which could be derived through collaborative or content-

based means. If no items are able to satisfy all the requirements, the challenging problem

arises of how best to relax the specified constraints without sacrificing the spirit of the

user’s query; there is rarely a single solution [3].

Critiquing-based recommendation

Critiquing-based recommendation frames the item selection process as a cyclic interaction

between the system and the user. The recommender proposes a sequence of items, and the

user either accepts an item or scores it according to the perceived value of some attribute

(e.g. attractiveness, comfort, bulkiness) [13]. Whether a lower or higher attribute value is

better is context-dependent; sometimes the goal may be to match a certain target value.

Such user feedback guides the recommender in its subsequent search through the space

of items, until an item is accepted. This dynamic can be thought of as a two-player game

of imperfect information, in which the ultimate aim is to maximise the expected rating of

the finally-recommended item and minimise the number of cycles required to get there.

Only the user has direct access to their preference model; only the recommender system

has direct access to the complete population of items. Critiquing-based approaches are

12

useful in domains where users are non-experts who can pass judgement on items when

they see them, but are not capable of reliably specifying their requirements a priori, as

required in constraint-based recommendation [14].

Context-aware recommendation

Context-aware recommendation is somewhat akin to the content-based approach in that

it assigns keywords, categories or properties, except that here those labels are applied to

the user and the particularities of their present situation. For example, the system may

categorise users according to demographic factors, their recent activity on the platform, or

environmental data such as location, weather, and time-of-day [15]. Such information can

be used to add constraint to a collaborative filtering algorithm, or form the basis of hand-

crafted rules (e.g. women in their 30s shop for clothes at weekends). A disadvantage of

näıve context-aware recommendation is that it may entrench unhelpful stereotypes, and

ineffectively cater to individuals who do not conform to trends in the wider population

[16]. Rather than enforcing hard thresholds and filters based on contextual factors, it

is often more appropriate to apply a weighting operation, raising or lowering ratings

incrementally.

Hybrid recommendation

Hybrid recommendation is the catch-all term for approaches that combine several of

the basic recommendation types in order to attain improved accuracy or generalisation

performance [17]. Separate recommendation modules, which take different views on the

available data, may be designed and assembled into a cascade pipeline or have their rec-

ommendations combined in a weighted manner. Alternatively, a fully-mixed approach

may be used, in which the different techniques are blended to yield a single recommen-

dation whose origins cannot be so easily disentangled [3]. With the proliferation of large,

diverse datasets and powerful computing hardware, the majority of recommender systems

deployed in industry harness some degree of hybridisation [18].

2.0.3 Recommendation for Groups

The philosophical and practical problem of effective decision making within inhomo-

geneous groups has been a focus of scholarly inquiry for millennia, with ramifications

throughout society. In the political and business spheres, many decision making protocols

have been crafted, from a wide array of voting-based methods to the unanimity-focused

debates of the European Council and the endless complexities of bureaucratic govern-

ment. In computer science, a range of algorithms have been developed to support the

decision making of groups. Of particular relevance to this project are decision contexts

where the choice is between a large but finite number of options, over which each group

13

member has a set of preferences. This is the domain of group recommender systems, of

which travel and tourism is one of the most natural applications.

At one level, group recommender systems have much in common with their single-

user counterparts. The relationship between individual users and items, as quantified by

implicit or explicit preferences, persists, as does the ultimate aim to maximise satisfaction

or utility. Additional complexity arises from the fact that in groups, multiple sets of

preferences exist, which are very likely to be in conflict [3]. In this context there is

generally no single optimal utility function, and assumptions must be made about how

best to reconcile any conflicts and give fair priority to all individuals.

At a high-level, group recommender systems follow two alternative strategies for

arriving at a single decision. Firstly, the system may compute separate item rating

scores for each individual in isolation, then combine the scores into a single set of values

(aggregation-of-scores). Alternatively, preference and demographic information about all

members may be aggregated into a group profile which is treated as a single user, and

processed as normal to select a single outcome (aggregation-of-preferences) [3]. One or

the other of these approaches may yield superior results, depending on the size and ho-

mogeneity of the group, and the nature of the available options. There are also many

valid mathematical operations that could be used to aggregate the scores or preferences.

These vary from a simple averaging procedure to more sophisticated mechanisms of vot-

ing or simulated bargaining. In the least misery method, the objective of aggregation

is to yield a recommendation that maximises the smallest satisfaction value across the

group members [19].

2.0.4 Recommendation for Tourism

Tourism has long been a popular application domain for recommendation technology. A

review article dating back to 2002 [20] presents two successful systems that had been

deployed for real-world use: TripleHop’s TripMatcher [21] and VacationCoach’s Me-

Print. Both systems focus exclusively on aiding the selection of high-level destinations

rather than specific POIs; the author claims that this level of recommendation affords the

simplest direct comparison between options. Both systems also follow a broadly content-

based approach, aiming to mimic the interaction with a human travel agent through a

sequence of targeted questions to elicit users’ preferences. They also sort tourists into

categories to further tailor recommendations, with Me-Print requiring the user to self-

identify with one of several labels, and TripMatcher applying collaborative filtering to

users’ history of interactions on the site. The author warns that a recommender system

relying entirely on collaborative filtering cannot work in the tourism domain, since the

space of travel experiences is so vast that any user-item ratings matrix becomes too sparse

to be usable. This view is supported by a a more recent survey from 2014 [22], which

14

notes that the majority of successful recommenders employ hybrid mechanisms. It also

heralds the widespread ownership of mobile devices as a major opportunity to provide

time- and location-sensitive recommendations to tourists, greatly enhancing relevance. A

trend towards agent-based recommendation architectures is also highlighted. Here users,

travel providers and even candidate destinations are explicitly modelled as agents with

goals and a degree of decision-making autonomy.

One such agent-based system, called Turist@ [23], tackles the problem of within-

city POI recommendation. The authors describe a complex architecture featuring one

agent per activity type (e.g. sights, sports, theatre), one per user, and one central broker.

The system employs a hybrid of content-based methods (comparing feature vectors for

user profiles to those for candidate POIs) and collaborative filtering (clustering using

the ClusDM algorithm) to synthesise recommendations. User profiles are initialised

via a questionnaire and demographic data to mitigate the cold-start problem. Another

ambitious tourism recommender, called Samap [24], augments suggested itineraries with

transport links and dining spots. The system comprises three agents, handling sequential

stages of the recommendation pipeline. The first models user preferences, the second

uses collaborative filtering to generate a list of suitable POIs, and the third assembles a

subset of this list into an itinerary, compatible with opening times and transportation.

The system uses logical induction to compare desired and actual attributes and return

results that satisfy all constraints. In addition to the agent-based formulation, a staged

item-selection pipeline is also a common feature of tourism recommenders. ABiPRS [25]

seeks to rank a list of POIs by their expected relevance, but first applies a series of hard

filters based on geographic proximity, time-of-day and overall score on review websites;

this greatly reduces the computational intensiveness of the ranking operation. The tool

also employs an ensemble of ranking models which, when evaluated using data from both

TripAdvisor and Yelp, is found to improve robustness over any single method alone.

In each of the above cases, the objective is to recommend a full itinerary of POIs

between fixed start and end points – this is commonly known as the orienteering prob-

lem. Other systems focus on recommending only the next POI to visit, given a tourist’s

current location. Many successfully employ collaborative filtering for this task, drawing

similarities between users based on their existing histories [26], potentially operating on

the basis of POI categories as well as individual location [27] or incorporating temporal

information to ensure that recommendations are appropriate for the time-of-day [28].

Others use more generic machine learning techniques such as Markov models, gradient-

boosted regression trees and support vector machines [29]. These also may take temporal,

and even seasonal, factors into a account [30]. The majority of these systems output just

a single recommendation or top-k items. While easy for the end user to digest, this limits

the amount of information available to them and partially curtails their agency.

Over the past decade, the majority of innovative work around tourism recommenda-

15

tion has operated at the level of within-city POI recommendation, but several works have

applied similar techniques in different contexts. For example, the PersQ algorithm [31]

uses Monte Carlo tree search to build amusement park ride itineraries, with the goal of

minimising queuing time while maximising enjoyment. Other systems recommend high-

level destinations (e.g. cities), for example by identifying scenery from a database that

is similar to a user-provided photo or set of keywords [32], or by engaging the user in

a comprehensive survey of landscape and cultural preferences [33]. In the latter work,

recommendation results are presented not as a list or ranking, but as a cartogram with

localised colouring that represents the suitability of each region. A third destination-

level system [34] seeks to bypass extensive questioning by asking users merely to place

themselves into one of several ‘personality categories’, which in turn can be matched up

with stereotypical travel preferences. It is demonstrated that many of the key differences

between individuals can be successfully captured by this approach.

Several previous works have investigated the problem of tourism recommendation for

heterogeneous groups. Some follow traditional content-based approaches, matching POIs

to explicitly-given individual preferences before computing group ratings via a weighted

average [35], while others provide a platform for discussion and debate with the aim of

converging towards agreement [36]. The debate may be mediated by a central ‘negoti-

ation agent’ which iteratively proposes candidate destinations in response to expressed

preferences [37] or critiques of previous proposals [38].

2.1 Flickr Data for Tourism Recommendation

The rise of social networks and GPS-enabled devices over the past ten years has provided

a vast new data source of time- and location-tagged content which can be used to infer

the movements of tourists around the world. This idea has been explored numerous times

in the academic literature; in nearly all these cases the Flickr photo sharing platform has

been used as the primary data source. Many millions of posts on this service are fully

visible under a Creative Commons license, and come with a variety of surrounding meta-

data such as user tags and descriptions. 2015 saw the release of the Flickr YFCC100M

dataset [39], which contains metadata for 100 million such posts, and has made ambi-

tious research in this space significantly easier. The aforementioned work on the PersQ

algorithm [31] harnesses YFCC100M, from which photo locations and timestamps are

extracted to infer the time real tourists spent in the vicinity of each theme park ride.

Queuing times are estimated by subtracting ride durations found on Wikipedia. The

dataset is also used to estimate ride popularity, under the assumption that users upload

more photographs of places they enjoy more.

Elsewhere, the dataset has been used to inform recommendation of touristic routes

between specified start and end points within the city of Beijing [40]. Here, the data

16

are preprocessed to create a ground-truth bank of itineraries based on the temporal

order and location of uploaded photos. These are used for collaborative filtering along

with the user’s own location history, to construct routes inspired by those of similar

tourists. The system is evaluated against the dataset itself (cross-validation) via the

metric of coincidence rate (how frequently predicted routes match the ground-truth data).

It is found to outperform twelve classical methods on this metric, though given the

model is developed specifically for this single-city data source, the risk of overfitting

should be taken seriously. In [41], a travel histories dataset of eight cities is derived from

YFCC100M, and results for four are presented. Again the objective is to recommend POI

sequences that maximise enjoyment given fixed start and end points, but here visit and

travel times are also considered. The task is cast as an integer programming problem, and

cross-validation is used to evaluate performance via metrics such as F1-score. In a later

work [42], the authors extend the model to the group recommendation problem: groups

are assembled via clustering based on the cosine similarity of their preference vectors and

a group profile is computed by a simple averaging operation. In these works, a number

of näıve baselines are developed and used as points of comparison, such as ranking based

on overall popularity or proximity to the last-visited POI.

A similar set of baselines are adopted in [43], where a system is developed to suggest

travel routes within four Greek cities. Here, a large amount of attention is paid to to the

method of reconstructing POI visit histories from the Flickr dataset. Location-tagged

photos are clustered into high-density ‘areas of interest’, a set of popular keywords are

extracted from user-provided titles, descriptions and tags, and these keywords are related

to profiles of nearby POIs taken from the OpenStreetMap mapping service. This approach

allows large-scale assignment of POIs to photos with minimal manual input. In an even

more ambitious work concerning nine popular cities [44], POI labelling is assisted by

visual feature matching (via SIFT descriptors) across the uploaded images themselves,

and textual tags are instead used to infer enjoyment via sentiment analysis. However, it

should be acknowledged that none of the cited works include any analysis of the quality

of their Flickr-derived datasets, and effectively assume their accuracy when using them

to inform recommendation.

Each of the above Flickr -based systems has been developed to solve POI recommen-

dation problems (either orienteering or single-next-POI) within a small number of cities.

No work that could be found that harnesses the large bodies of location-tagged data to

infer preferences and enable collaborative filtering for destination-level recommendation,

or for POI recommendation within any more than ten target cities. In this respect, it

appears that the full potential of this global data source is yet to be realised.

17

2.2 Summary of Implications

The range of possible approaches to recommendation problems is vast, and only becomes

more diverse when recommending to diverse groups of users. It is difficult to determine a

priori which approach will yield the strongest performance, so it is beneficial to consider

a variety of options or build a hybrid system that utilises several.

In the domain of tourism, most novel developments in data-driven recommendation

have been for within-city POI recommendation, usually framed in terms of the orienteer-

ing problem. City-level recommenders appear to demonstrate less innovation, with most

still relying on explicitly-given preferences. There is little evidence of cross-pollination

of ideas between the two domains, and I found no work that seeks to perform both city-

and POI-level recommendation using the same underlying dataset.

In recent years, Flickr has become a very popular source of data for travel recom-

mendation, but remarkably little space in publications has been dedicated to the exact

methods used to infer tourists’ visitation histories from their photo uploads, and there

is no evidence of systematic evaluation of the accuracy of the derived datasets. In addi-

tion, the scope of these data-driven projects has been limited, with results reported for

only a small number of cities (typically between 4 and 10). This begs the question as to

whether the developed techniques may have been overfitted to their narrow applications.

Cross-validation is a standard method for the offline evaluation of POI recommendation

models, with a number of simple baselines (e.g. overall popularity, proximity) being

common points of comparison.

18

Chapter 3

Overview of Recommendation

Models

This chapter mathematically formalises the two problems that I seek to address in this

project: city recommendation for groups of tourists and within-city POI recommendation

for a single tourist. Rather than framing each problem as the presentation of a small

number of ‘best’ options to the target tourist or group, I am interested in computing

a complete ranking, from most- to least-recommended, of a finite set of options. After

introducing each problem, I present various models for solving it, that are intended to be

generic enough to be applied in a variety of environments. Subsequent chapters concern

the application of these models to a specific dataset of real-world travel histories.

3.1 City Recommendation

The first problem addressed in this project is that of recommending new cities for groups

of tourists to visit. Recommendations are based on the set of cities that each tourist has

already visited, and their preferences for various categories of point-of-interest. Figure

3.1 presents the key conceptual elements of the problem.

3.1.1 Notation

Throughout this section and the rest of the thesis, I employ the following notation:

• T = {t1, ..., tk} is a a set of k individual tourists.

• C = (c1, ..., cl) is a tuple of l cities. set(C) returns the set of its elements.

• X = (x1, ..., xm) is a tuple ofm POI categories. set(X) returns the set of its elements.

• Vt = {c1, ..., ca} and Ut = {c1, ..., cb} are the sets of tourist t’s visited and unvisited

cities respectively, such that Vt ∪ Ut = set(C) and Vt ∩ Ut = ∅.

19

1
2
3

Figure 3.1: Diagram illustrating the key elements of the city recommendation problem.
Each member of the tourist group [left] has a set of previously-visited cities, and a
measure of enjoyment for each. They also have preferences over POI categories such as
architectural landmarks, bars and parks. The same information is also available for a
wider population of tourists [top]. The character of each city [bottom] can be described
by the relative importance of each POI category within it. For example, a city with a
high importance value for landmarks (e.g. New York) is one in which tourists are likely
to visit specifically to experience this category of POI. In this chapter I propose three
recommendation models, which each take a different perspective on the available data to
score and rank all unvisited cities from most- to least-recommended [right].

• et = [et
1, ..., e

t
l] is a vector of tourist t’s past enjoyment of each city, ordered to

correspond with C. ∀i ∈ {1..l} et
i ∈ R≥0 and

∑l
i=1 et

i = 1. Note that unvisited

cities are included, but with enjoyment values of 0.

• pt = [pt
1, ...,p

t
m] is a vector of tourist t’s preference for each POI category, ordered

to correspond with X. ∀i ∈ {1..m} pt
i ∈ R≥0 and

∑m
i=1 pt

i = 1.

• ic = [ic1, ..., i
c
m] is a vector representing the relative importance of POI categories in

city c, ordered to correspond with X. ∀i ∈ {1..m} ici ∈ R≥0 and
∑m

i=1 ici = 1.

• enjt(c) → R≥0 is a latent function that returns tourist t’s potential enjoyment for

each c ∈ Ut, were they to visit that city.

20

3.1.2 Problem Definition

In the single-tourist case, the objective of city recommendation is to produce a ranking

of cities Rt = (c1, ..., cb), containing all the elements in Ut. An optimal ranking, R̂t, is

ordered such that ∀i ∈ {1 .. b − 1}, enjt(R̂t
i) ≥ enjt(R̂t

i+1). However, since the function

enjt is unobservable by the recommender system, optimality is unlikely to be practically

attainable. A more relaxed performance metric is provided by the normalised discounted

cumulative gain function nDCG [45], which operates on the premise that a highly relevant

item (in this case, a city with high potential enjoyment) that appears low in the ranking

should be penalised in logarithmic proportion to its position. In this particular context,

nDCG is defined as

nDCG(Rt) =
DCG(Rt)

DCG(R̂t)
(3.1)

where DCG is the discounted cumulative gain function

DCG(Rt) =
b∑

i=1

2enjt(Rti) − 1

log2(i+ 1)
(3.2)

This definition assumes that while enjt is hidden from the recommender system, it is

accessible during evaluation. nDCG(Rt) always lies in [0, 1], equalling 1 if and only if the

city ranking is optimal, Rt = R̂t.

The following subsections present three generic recommendation models for producing

a city ranking Rt for a single tourist t, given Vt, et, pt and ic for populations of tourists T,

cities C and POI categories X. These models are then extended to work with multi-tourist

groups. Later chapters describe the implementation of the models using real-world data.

3.1.3 Ranking by Tourist-Tourist Similarity

The first model produces city rankings through conventional collaborative filtering across

the population of tourists. I measure the similarity sim(t, t′) of two tourists t and t′ in

terms of their city enjoyment distributions et and et′ , using the rationale that tourists

who have visited and enjoyed several similar cities in the past are likely to continue to

have similar tastes in the future.

The pairwise similarity between two continuous-valued probability distributions can

be quantified in numerous ways, including cosine similarity, Pearson correlation and Man-

hattan distance [46]. For this application, as well as several others throughout the mod-

els in this chapter, I employ the non-parametric Jensen-Shannon divergence (JSD). It

is based on the Kullback-Leibler divergence, with the additional advantages of being

symmetric and always having a finite value. Its square root – the Jensen-Shannon dis-

tance – satisfies all the requirements of a distance measure [47]. The JSD between two

21

distributions x and y is defined as

JSD(x||y) =
1

2
D(x||z) +

1

2
D(y||z) (3.3)

where z = 1
2
(x + y) and D is the Kullback-Leibler divergence:

D(x||y) =

∫ ∞
∞

x(a) log

(
x(a)

y(a)

)
da (3.4)

The first step for producing a recommendation ranking for a single tourist t is to

compute the similarity value with each other tourist t′, which I define as 1 minus the

Jensen-Shannon distance between their city enjoyment distributions:

sim(t, t′) = 1−
√

JSD(et||et′) (3.5)

A neighbourhood Nt of the n highest-similarity tourists is assembled using this metric.

∀i : Ci ∈ Ut, the recommendation score St
TT (Ci) is defined as

St
TT (Ci) =

1

n

∑
t′∈Nt

et
i · sim(t, t′) (3.6)

A city ranking Rt
TT is constructed by ordering the cities in Ut by their St

TT scores.

3.1.4 Ranking by City-City Similarity

The second model produces city rankings by drawing similarities between the cities in

Vt and those in Ut, and works on the assumption that tourists tend to visit cities with

features in common. I measure the similarity sim(c, c′) of two cities c and c′ in terms of

their POI category importance distributions ic and ic
′
. The result is that, for example,

two cities with many popular parks and restaurants but few museums would be measured

as highly similar.

Again, I define city similarity in terms of Jensen-Shannon distance. Similarity values

are computed between each unvisited city c ∈ Ut and each visited city c′ ∈ Vt:

sim(c, c′) = 1−
√

JSD(ic||ic′) (3.7)

∀c ∈ Ut, the recommendation score St
CC(c) is defined as

St
CC(c) =

1

a

∑
i : Ci∈Vt

et
i · sim(c,Ci) (3.8)

where a is the cardinality of Vt. A city ranking Rt
CC is constructed by ordering the cities

in Ut by their St
CC scores.

22

3.1.5 Ranking by Tourist-City Similarity

The third and final model produces recommendations by matching the tourist’s POI

category preferences with the POI category importance distribution for each city in Ut.

This model is closest to the traditional notion of a content-based recommender system,

and operates on the assumption that, for example, a tourist with a known preference

for visiting art galleries should be recommended cities where this kind of attraction is

popular.

The Jensen-Shannon distance is again used to define the similarity metric. Here,

similarity values are computed between the tourist’s POI category preferences pt and the

POI category importance distribution ic for each unvisited city c ∈ Ut:

sim(t, c) = 1−
√

JSD(pt||ic) (3.9)

In this model, no further computation is needed. ∀c ∈ Ut, the recommendation score

from tourist-city similarity St
TC(c) can be simply defined as

St
TC(c) = sim(t, c) (3.10)

A city ranking Rt
TC is constructed by ordering the cities in Ut by their St

TC scores.

3.1.6 Extension to Multi-Tourist Groups

In the case of producing city recommendations for a group, defined as a set of g tourists

G where 1 < g � k, the problem definition must be adapted slightly. Here, a city ranking

RG should contain all the elements in UG, where

UG =
⋂
t∈G

Ut (3.11)

The quality of a ranking can be quantified as the average nDCG value across the tourists

in the group.

I propose two approaches to extending the three recommender models to multi-tourist

groups, one based on aggregation-of-scores (AoS) and the other based on aggregation-of-

preferences (AoP).

AoS Approach

In this aggregation approach, an independent recommendation score St
XX(c) (where XX

stands for any of the three model types: TT , CC or TC) is generated for each tourist

t ∈ G and each city c ∈ UG, before being combined. There are several viable combination

methods, of which I explore two in this project: computing the sum of the scores and

23

taking the maximum value from across the group. In these two cases respectively, the

group recommendation score SG
X(c) is defined as

SG
XX(c) =

∑
t∈G

St
XX(c) or SG

XX(c) = max
t∈G

(
St
XX(c)

)
(3.12)

As in the single-tourist models, the city ranking RG
XX is constructed by ordering the cities

in UG by their SG
XX scores.

AoP Approach

In this aggregation approach, a single ranking is generated using a group profile, consisting

of an aggregated visited cities set VG, city enjoyment distribution eG and POI category

preference distribution pG. VG is simply the union of the visited cities for the tourists in

the group:

VG =
⋃
t∈G

Vt (3.13)

while for the two distribution vectors, there are again several ways in which they could

reasonably be combined. Once again opting to consider sum- and maximum-based ag-

gregation, I define eG as

eG =

∑
t∈G et∑l

i=1

∑
t∈G et

i

or eG =
ewmaxt∈G (et)∑l
i=1 maxt∈G (et

i)
(3.14)

where ewmax returns the elementwise maximum of a set of vectors. It is important

that the aggregated vector be renormalised to sum to 1, so that it remains a probability

distribution. Similarly, I define pG as

pG =

∑
t∈G pt∑m

i=1

∑
t∈G pt

i

or PG =
ewmaxt∈G (pt)∑m
i=1 maxt∈G (pt

i)
(3.15)

Once the elements of the group profile have been computed, they can be used di-

rectly as inputs for the single-tourist recommender models, meaning the group profile is

effectively treated as an individual tourist.

3.2 Point-of-interest Recommendation

The second problem addressed in this project is that of recommending points-of-interest to

visit during an ongoing trip to a specific city. In this problem, only a single target tourist

is considered. In addition to the tourist’s preferences, the suitability of recommendations

is highly sensitive to contextual factors (the tourist’s current location, as well as the time

24

@
1
2
3

Figure 3.2: Diagram illustrating the key elements of the POI recommendation problem.
The target tourist [left] is assumed to have arrived in the city and visited at least one
POI already. Their history of visits is available, complete with time, date and location
information, alongside their POI category preference values as in the city recommendation
problem. The same information is also available for a wider population of tourists [top-
right]. Each POI [bottom] is a member of a category, and can be described by its
location, as well as distributions describing how its popularity varies as a function of
time-of-day and date. This can be related to the current time, date and location of
the tourist [top-left]. In this chapter I propose a hybrid recommendation model that
incorporates a variety of contextual and personalised factors to score and rank all POIs
in the city from most- to least-recommended [right].

and date) and the set of POIs that have already been visited. Figure 3.2 presents the

key conceptual elements of the problem.

3.2.1 Notation

In addition to all notation introduced in the previous section, the following is required

for discussion of the point-of-interest recommendation problem:

• Pc = {p1, ..., poc} is a set of oc POIs in city c.

• cat : Pc → set(X) is a function that maps a POI p ∈ Pc to a category x ∈ set(X).

• loc : Pc → R2 is a function that maps a POI to a [latitude, longitude] vector.

25

• Ht,c = (v1, ..., vqt,c) is a tuple representing the history of qt,c POI visits already

made by tourist t in city c. It is ordered chronologically, with the first element

representing the earliest visit. If t has never visited c, Ht,c = (), the empty tuple.

• poi : Ht,c → Pc is a function that maps a visit v ∈ Ht,c to a POI p ∈ Pc.

• startTime : Ht,c → timestamp and endTime : Ht,c → timestamp are functions that

map a visit v ∈ Ht,c to timestamp objects representing the start and end of that

visit.

• month : timestamp → {1..12} is a function that maps a timestamp to an integer.

If the corresponding visit is situated in the Northern Hemisphere, i.e. θ ≥ 0 where

[θ, φ] = loc(poi(v)), this integer represents its calendar month of occurrence (Jan:1,

Feb:2, ... Dec:12). However, if θ < 0, the number is shifted by 6 to reflect the

different pattern of seasons (Jan:7, Feb:8, ... Dec:6).

• hour : timestamp → {0..23} is a function that maps a timestamp to an integer

representing the hour of the day. Times are rounded down, e.g. 15:53→ 15.

• enjt,now : p → R≥0 is a latent function that returns tourist t’s potential enjoyment

for each p ∈ Pc, conditioned on the timestamp now of the hypothetical visit.

3.2.2 Problem Definition

In the single-tourist case, the objective of POI recommendation within a given city c, and

at a target timestamp now, is to produce a ranking of POIs Rt = (p1, ..., pj), containing

each element p ∈ Pc. In this project, I focus specifically on the problem of recommending

a POI to visit shortly after the most recent visit in the tourist’s history, thereby mimicking

the scenario of exploring a city in an unstructured manner and deciding where to go next

on-the-fly. In including all elements of Pc in the ranking, this problem implicitly permits

the recommendation of POIs that the tourist has already visited. There are realistic

scenarios in which this may be appropriate, such as visiting a landmark at both night

and day, and eating more than once at a highly-enjoyed restaurant.

An optimal ranking, R̂t, is ordered such that ∀i ∈ {1 .. j − 1}, enjt,now(R̂t
i) ≥

enjt,now(R̂t
i+1). Just as in the city recommendation problem, the function enjt,now is un-

observable by the recommender system, so optimality is practically unattainable. Again,

the nDCG function provides a more relaxed performance metric, and can be applied in

analogous fashion to that described in section 3.1.21.

1When comparing recommendation performance between two cities c and c′, one must acknowledge
that in general they will have different numbers of POIs, i.e. |Pc| 6= |Pc′ |. During evaluation of the
recommender model created in this project, I generally discuss ranks in terms of proportions of the
number of available POIs.

26

The following subsections present a generic recommendation model for producing a

POI ranking Rt for a single tourist t in a city c at timestamp now, given Pc, Ht,c and pt

for populations of tourists T, cities C and POI categories X. Later chapters describe the

implementation of the model using real-world data.

3.2.3 Model Components

In contrast to the city recommender system, I integrate various approaches to scoring

candidate POIs into a single hybrid model. Each approach yields a numerical feature,

which is fed into an aggregation algorithm that outputs recommendation scores. For each

tourist t, visit time now and POI p, I synthesise features representing the following:

• p’s overall popularity;

• t’s level of preference for cat(p);

• The proximity of p to t’s current location;

• The appropriateness of p given month(now) and hour(now);

• Population-wide correlations between the visitation of p and the POIs that t has

already been to.

The character of each feature is modulated by hyperparameters. In this project, I consider

three techniques for aggregating the features into final recommendation scores. The first

is a simple sum of the (normalised) feature values, while the others are machine learning

models: linear regression and a feedforward neural network.

3.2.4 Overall Popularity Feature

The first feature used in the model represents each POI’s overall popularity amongst the

population of tourists. For a POI p, I define the visitor count vis(p) as the number of

unique tourists that have visited it (i.e. repeat visits by the same tourist are ignored):

vis(p) = |{t : (∃v ∈ Ht,c : poi(v) = p)}| (3.16)

To create the popularity feature fPop(p), I apply a function that compresses the value

of vis(p) into the range [0, 1]. Preprocessing the feature in this way reduces the extreme

differential between the most popular POIs and the least popular, which otherwise risks

virtually eliminating the chance of the latter being highly ranked. fPop(p) is defined as

fPop(p) = 1− 2
−vis(p)
α (3.17)

where α > 0 is a hyperparameter that dictates the steepness of the function. The equation

is set up so that α equals the number of unique visitors that makes fPop(p) = 0.5.

27

3.2.5 Preference-aware Feature

The second consideration that the model takes into account is the tourist’s preferences

over POI categories, as represented by the vector pt which was introduced in section

3.1.1. For a tourist t and POI p, I define the category preference weight fCatpt(p) to

equal the corresponding category preference value:

fCatpt(p) = pt
i (3.18)

where i is the index of cat(p) in the tuple of categories X.

If, for example, the scoring model consisted only of the straight product of fPop

and fCatpt , each POI would be given a recommendation score proportional to its visitor

count (with activation function applied), scaled by t’s preference for its category, and

ranked accordingly. As an example: the Natural History Museum in London is extremely

popular, but if the tourist had low preference for museums, this POI would appear lower

in their personalised ranking than otherwise.

3.2.6 Context-aware Features

The model also accounts for the following factors that are agnostic to the preferences

of the individual tourist, and are instead functions of their particular spatio-temporal

context.

Proximity to Current Location

Tourists typically wish to minimise the time and effort spent moving between locations

and experiences of interest, and as such will tend to prioritise easily-accessible POIs

when choosing where to visit next. The model estimates these factors through the proxy

of physical distance. Since in this project I focus on the problem of recommending

POIs to go to soon after the tourist’s most recent visit v = Ht,c
qt,c , I assume that the

[latitude, longitude] of this visit [θv, φv] = loc(poi(v)) is the tourist’s current location.

The Euclidean distance in metres from here to another POI p, whose location is [θp, φp] =

loc(p), can be approximated by

dist(v, p) = R

√
(θp − θv)2 + cos2 θ (φp − φv)

2 where θ =
θv + θp

2
(3.19)

where R = 6.371 × 106m is the average radius of the earth. This equation embodies a

number of simplifying assumptions, not least that of the perfect sphericity of the planet,

but given that all distances of interest are intra-city (thus at the scale of several thousand

metres at most) the effect of its imprecision is negligibly small. I define the proximity

28

feature fProxt(p) as

fProx(p) = 1− 2
dist(v,p)

β (3.20)

where β > 0 is a hyperparameter that dictates the rate with which the feature value

drops off with distance. The equation is set up so that β equals the distance to p in

metres that makes fProx(p) = 0.5.

Time-of-day Appropriateness

Another factor that mediates the suitability of a given POI recommendation is the time-

of-day of the intended visit. Clearly, a visit to a park is more suited to 10am than

10pm, whereas quite the opposite is true for a bar or nightclub, and a restaurant is likely

to be more relevant around common mealtimes than at other points in the day. Such

knowledge could be hard-coded into an expert system module, but instead I choose to

derive it statistically.

I initially quantify temporal trends on a category-wide basis, by assembling a his-

togram of visit counts starting at each hour of the day. This histogram considers visits

in all cities in C, not just the current location of the target tourist. For a category x and

start hour h ∈ {0..23}, the histogram value chHisth(x) is defined as

chHisth(x) =
∑
c∈C

∑
t∈T

∑
v∈Ht,c

δx(cat(poi(v))) · δh(hour(startTime(v))) (3.21)

where δx(y) is defined as

δxy =

{
1 if y = x

0 otherwise
(3.22)

This value captures high-level information about the global visitation of each category,

but misses any POI-specific deviations from the norm. Examples of this phenomenon

might include a fountain that plays host to a late-night light show, or a pub with a beer

garden that makes it unusually suited to daytime drinking. To capture this, a histogram

can be assembled for each POI p in isolation. For each start hour h, the value phHisth(p)

is defined as

phHisth(p) =
∑
t∈T

∑
v∈Ht,c

δp(poi(v)) · δh(hour(startTime(v))) (3.23)

It may seem at first glance that equation 3.23 always yields more meaningful results

than equation 3.21 for the purposes of recommendation, but this may not be the case if

visits to p are sparse, thereby giving an unrepresentative sample. The following equation

for the time-sensitive feature fTimeh(p) of a POI p balances the histogram for its category

29

against the sparser but more specific histogram for p itself, which gains weight as the

number of visits to p increases:

fTimeh(p) =

[
2ε · chHisth(cat(p))

1
24

∑23
i=0 chHisti(cat(p))

]
+

[
(1− 2ε) · phHisth(p)

1
24

∑23
i=0 phHisti(p)

]
(3.24)

where

ε =
−
∑

t∈T
∑qt,c

i=1 δp(poi(Ht,c
i))

γ

The equation is set up so that the single hyperparameter γ > 0 represents the number of

visits that p must have for its specific histogram to be weighted equally to the category

histogram.

Time-of-year Appropriateness

In a similar vein, the date of the intended visit also influences how POIs should be scored.

Places such as beaches, water parks and sports stadia all have significant seasonality, a

fact which should be reflected in the final ranking. My approach to this factor mirrors

almost exactly the time-of-day weighting described above: both category-wide and POI-

specific histograms are assembled and balanced according to the POI’s visit count. For

a category x and month m ∈ {1..12}, the histogram value cmHistm(x) is defined as2

cmHistm(x) =
∑
c∈C

∑
t∈T

∑
v∈Ht,c

δx(cat(poi(v))) · δm(month(startTime(v))) (3.25)

The POI-specific histogram value pmHistm(p) is defined as

pmHisth(p) =
∑
t∈T

∑
v∈Ht,c

δp(poi(v)) · δm(month(startTime(v))) (3.26)

The final date-sensitive feature fDatem(p) is defined as

fDatem(p) =

[
2ε · cmHistm(cat(p))

1
12

∑12
i=1 cmHisti(cat(p))

]
+

[
(1− 2ε) · pmHisth(p)

1
12

∑12
i=1 pmHisti(p)

]
(3.27)

and the definition of ε is the same as in equation 3.24 (with a common γ hyperparameter).

2It is worth reiterating here that month(v) is defined such that the month numbers for Southern
Hemisphere POIs are shifted by 6. This accounts for the flip in seasonality south of the equator.

30

3.2.7 History-aware Feature

The final factor that the model considers is the coincidence of POIs in tourists’ histories.

For example, it may be that tourists who visit a certain quiet park are also likely to visit

a particular café, due not to physical proximity, but to its similarly peaceful ambience.

Having measured all such coincidences, the model can combine them with the target

tourist’s visit history and boost the recommendation scores of POIs which commonly

appear alongside those already visited. In building this part of the model, I make the

assumption that visits that are closer in time should contribute more to the measure

of coincidence. A natural extension of this means that more recent visits in the target

tourist’s history also contribute more to the final recommendation.

For two POIs p and p′, the coincidence score coinc(p, p′) is defined as

coinc(p, p′) =
1

vis(p′)

∑
t : (∃v∈Ht,c:poi(v)=p) ∧ (∃v∈Ht,c:poi(v)=p′)

ζ + (1− ζ) · 2
−∆t(v,v

′)
κ (3.28)

where ∆t(v, v
′) is the duration in hours by which the visit to p (denoted v) and the visit

to p′ (denoted v′) are separated in Ht,c. This is either startTime(v′) − endTime(v) or

startTime(v)−endTime(v′) depending on which was visited first. If one or more of p and

p′ appears multiple times in Ht,c, the single shortest separation time is used.

The expression inside the summation in equation 3.28 applies a weight to each co-

incidence that decays exponentially with ∆t(p, p
′). The two hyperparameters ζ ∈ [0, 1]

and κ > 0 dictate the asymptotic value and the rate of decay respectively. Setting ζ = 1

effectively ignores the time difference, regardless how long, whereas setting ζ = 0 and κ

to a small value means that only very temporally proximal visits contribute to the coin-

cidence score. The coinc function is not symmetric (coinc(p, p′) 6= coinc(p′, p)) because

the equation is normalised by the number of visitors to p′ as defined in equation 3.16.

Let At,c be the set of POIs that tourist t has visited in city c: At,c = {poi(v) : v ∈
Ht,c}. The history-sensitive feature fHistHt,c(p) for a POI p is defined as a function of its

coincidence score with respect to each POI p′ ∈ At,c, scaled by the time elapsed between

t’s most recent visit to p′ (denoted v′) and now:

fHistHt,c(p) =
∑

p′∈At,c
coinc(p, p′) ·

[
ζ + (1− ζ) · 2

−∆t(v
′,now)
κ

]
(3.29)

where the hyperparameters ζ and κ are shared with equation 3.28. The summation

operation means that tourists with more unique POIs in their visit histories generally

produce higher history-sensitive feature values. This is appropriate since longer histories

provide more information about a tourist’s habits and preferences.

31

3.2.8 Scoring Methods

Given the six features introduced above, a single recommendation score must be computed

for each POI. In this project, I compare three alternative methods for performing the

features-to-score mapping operation. Prior to passing the features into each, I combine

them into a feature vector vt,p, where

vt,p = [fPop(p), fCatpt(p), fProxHt,c(p), fTimehour(now)(p), fDatemonth(now)(p), fHistHt,c(p)]

(3.30)

Rather than using the raw feature values, I perform a z-normalisation operation to

bring them into a common scale. Given a large set of recommendation scenarios S, each

concerning a tourist t in city c at time now, and with history Ht,c and preferences pt, the

global mean µi and standard deviation σi of element number i of the feature vector can

be calculated as

µi =
1

|S|
∑

(t,c,now)∈S

∑
p∈Pc

vt,p
i and σi =

√
1

|S|
∑

(t,c,now)∈S

∑
p∈Pc

(
vt,p
i − µi

)2
(3.31)

respectively. Each element of each POI’s feature vector, in each scenario in S, can then

z-normalised to yield a new vector v̄t,p as follows:

v̄t,p
i =

vt,p
i − µi

σi
(3.32)

The three scoring methods explored in this project are

• Sum: Simply summing all the elements of the z-normalised feature vector v̄t,p to

yield the score St
Sum(p), i.e.

St
Sum(p) =

6∑
i=1

v̄t,p
i (3.33)

• Lin: Computing a weighted linear sum of the elements of v̄t,p to yield the score

St
Lin(p), i.e.

St
Lin(p) =

6∑
i=1

wi · v̄t,p
i (3.34)

where w is a vector of weights, which must be optimised to minimise a particular

error measure. My choice of error measure and training procedure for this project

is described in section 6.2.

• NN : Feeding v̄t,p into the input layer of a feedforward neural network with one

or more hidden layers and a single output neuron whose activation is taken as the

32

score St
NN(p). In this project, I consider a variety of network architectures with

one, two or three hidden layers and use logistic activation functions. The neural

network training procedure is also described in section 6.2.

Regardless of which scoring technique is used, the POI ranking Rt is constructed by

ordering the POIs in Pc by their St(p) scores.

3.2.9 Extension to Multi-Tourist Groups

The POI recommendation model outlined in this section is designed to work with a single

target tourist rather than a group. The model could be extended to work with groups in

a roughly similar manner to the city recommender, through either AoS- or AoP -based

methods. However, project time constraints, and foreseeable difficulties with adapting

my chosen evaluation methods to the group recommendation setting, mean that I have

left this extension as future work.

33

Chapter 4

Creation of Travel Histories Dataset

In this project, I implement the recommendation models outlined in the previous chapter

to work specifically with a novel dataset of real-world travel histories. In this respect,

the real tourists whose activity is documented in the dataset serve as the user base for

the recommender systems. This chapter describes the method by which I synthesised the

dataset from published social media data, augmented by information from an open-source

mapping service.

4.1 YFCC100M and OpenStreetMap

YFCC100M [39] is the largest publicly-available media collection in the world, consisting

of detailed metadata for 100 million posts (99.2 still images and 0.8 million videos) up-

loaded to the Yahoo! -owned Flickr photo sharing platform between 2004 and 2014 [39].

Types of available metadata include unique photo and user IDs; the time, date, longitude

and latitude of capture; and a user-assigned title, description and list of tags. All of these

are actively utilised in this project. Alongside the core dataset, several expansion packs

are available, including one called Places which labels many of the photos with unique

WOEID (Where On Earth IDentifier) tags1. These tags use Yahoo! ’s internal database

of geolocation data to provide place name estimates with a hierarchy of precision, even

down to individual POIs in some cases. For example, the tag

Taka Taka:POI, Bristol:Town, Avon:County

United Kingdom:Country, Europe/London:Timezone

refers to a particularly delectable late night sandwich shop in the city of Bristol.

OpenStreetMap (OSM) [48] is a crowdsourced world map, built by millions of volun-

teers who collect data on the locations of real-world entities (such as buildings, roads,

businesses, public amenities and natural structures), often through manual survey. The

1The WOEID protocol now appears to be defunct and is no longer used by Yahoo!, but the tags
nonetheless contain the information required for my purposes.

34

map database can be freely edited in the same manner as Wikipedia and, like the popular

online encyclopaedia, compares well in terms of accuracy with proprietary alternatives

such as Google Maps. As an open-source project, OSM has a vibrant community of de-

velopers and many APIs for querying various aspects of the database. As outlined below,

I used one such API to obtain detailed records of POIs in cities around the world.

4.2 Implementation Notes

I implemented all processing stages described in this chapter using the Python program-

ming language. Many of the more complex data wrangling operations were completed

with the help of the pandas library [49], which provides a suite of fast and flexible tools

for manipulating large tables. Since the volume of data in YFCC100M is large, the

creation of the travel histories dataset was the most computationally-intensive part of

the project. For this reason, I deployed the dataset and processing scripts on a high-

performance Linux virtual machine instance (n1-highcpu-4 machine type, 4 vCPUs, 3.6

GB memory) on the Google Cloud Compute Engine.

4.3 Data Preprocessing

After transferring the core YFCC100M dataset and Places expansion pack (two Bzip2-

compressed files of size 14.6GB and 1.8GB respectively) from a dedicated Amazon S3 data

bucket to the virtual machine instance, I used the bz2 Python module to decompress the

dataset files and read them in streaming format, one photo at a time2. To avoid needing

to hold the entire dataset in memory at once, the script split it into 100 equal batches.

The objective of this initial pass through the dataset was to divide it according to the city

where each photo was taken, via the WOEID information in the Places expansion pack.

Any photo that contained a WOEID tag with a precision level of Town or higher was

appended to a data structure for the corresponding town (referred to as city throughout

this thesis). Data for the top 200 most common cities were written out in .csv format

for later use in this project. Each line in the 200 .csv files contained:

• The line number of the photo in the YFCC100M dataset;

• The unique identification number of the photo on the Flickr platform, allowing it

to be viewed in a web browser if prefixed with www.flickr.com/photo.gne?id=;

2Both the core dataset and Places expansion pack are randomised with respect to date, location and
originating user, but the randomised order is common between them. This makes relation of the two
datasets trivial since, for example, line number 123 of the core dataset refers to the same photo as line
123 of the Places dataset.

35

London, UK (1)

Bristol, UK (88)

Buffalo, NY (200)

Figure 4.1: Distribution of photos taken in the 200 most popular cities in the YFCC100M
dataset. Annotations indicate rankings of several of these cities.

• The unique identification string of the originating user, allowing their profile to be

viewed in a web browser if prefixed with www.flickr.com/photos/;

• The time and date of capture in dd/mm/yyyy HH:MM:SS format;

• The longitude and latitude of capture, alongside a precision measure ranging from

1 (world-level) to 16 (street-level);

• If available, the POI section of the WOEID tag, which would later be used to assist

the labelling of POI visits;

• The user-assigned title, description and list of tags for the photo;

Out of the full dataset of 100 million photos, 19.5 million were identified as having been

taken in the top 200 cities. Fig. 4.1 shows the distribution of photo counts.

4.4 Visit Creation and Labelling

The next step was to use the information stored in the .csv files to accurately estimate

the POI at which each photo was taken. Specifically, I used the longitude and latitude

coordinates, the user-provided title, description and tags, and (initially) the name given

in the POI section of the WOEID tag, if this was available.

4.4.1 Grouping Photos into Visits

From initial an exploration of the dataset, including viewing the original images, my first

observation was that many users had uploaded multiple consecutive photos at the same

location, which should be treated as a single visit. I addressed this situation by processing

36

Table 4.1: Top: Relevant data for three photos taken by a user within a 40 minute period
in the city of Bristol. Bottom: Single visit constructed from the three photos.

Time Long Lat WOEID
POI

Title Description Tags

01/07/19
12:00

-2.606800 51.454078 Brandon
Hill
Park

Tower It’s quite tall tower, tall,
bristol

01/07/19
12:15

-2.606887 51.454085 Plaque Says some-
thing about
John Cabot

plaque,
metal, folly

01/07/19
12:40

-2.606729 51.453963 Bristol
View

brandon,
hill, view

Start End Long Lat # Words

01/07/19
12:00

01/07/19
12:40

-2.606805 51.454375 3 {brandon, hill, park,

tower, it’s, quite,

tall, bristol, plaque,

says, something, about,

john, cabot, metal,

folly, view}

the photos for each user independently: ordering by capture date, then iterating through

from earliest to latest. The very first photo initiated the first visit. If any subsequent

photo met both of the following conditions:

• Capture time within 1 hour of the last photo in the current visit;

• Coordinates within 10 metres of the first photo in the current visit, as computed

using the Euclidean distance equation presented in equation 3.19;

it was appended to the current visit. Otherwise, a new visit was initiated. For each

visit v, the number of constituent photos was stored, alongside the first and last capture

time and mean coordinates. Also stored was a set of visit words Wv. I assembled Wv

by concatenating the lists of words in all photo titles, descriptions and user tags, and, if

available, the POI name from the WOEID tag. Duplicate words were discarded.

Table 4.1 illustrates the result of grouping three photos into a single visit.

4.4.2 Obtaining POIs from OpenStreetMap

I used the Overpass API for OSM [50] to download a list of POIs within each city. In the

OSM database, each entity is assigned a characteristic pair of coordinates, as well as a

number of additional properties which define whether it represents an amenity (e.g. shop,

37

restaurant, cinema), building, road, natural space, landmark, or one of many other kinds

of real-world object. Using the API’s query protocol, I retrieved only the entities that

would be relevant to tourists, namely those with one or more of the following properties:

• amenity (excluding supermarkets, community centres and several others);

• natural (excluding individual trees or unnamed bodies of water);

• building (excluding residential buildings, schools, car parks and several others);

• tourism (excluding hotels and tourist information points);

• historic.

I arrived at this combination of properties after a process of experimentation, and found

that it successfully retrieved the vast majority of entities that could reasonably be called

POIs, with minimal extraneous additions. These properties also allowed each downloaded

POI to be automatically assigned to a category, which would be crucial information for

several subsystems of the recommendation models.

Among the other properties provided for each OSM entity are a name (often in several

languages) and more specialist details such as the cuisine for a restaurant or architect

for a building. Similar to the construction of visit words from user-provided titles and

descriptions, I used such fields to assemble a set of POI words W p for each POI p. As

an example, Cabot Tower in the city of Bristol yielded the set W p ={cabot, tower,

william, venn, gough, folly, attraction}. The sets of visit words and POI words

were the essential information for assigning POIs to user visits, a process I refer to as

labelling.

4.4.3 Labelling Visits with POIs

For a given visit v, labelling proceeded as follows:

1. Assemble a shortlist P v of all the POIs within a 250 metre radius of its coordinates

(the mean coordinates of the constituent photos).

2. For each POI p ∈ P v, compute the intersection of W v and W p. Denote the resultant

(in most cases, empty) set the evidence Ev,p.

3. Compute a match score Sv,p as a function of both the evidence and the distance

between the coordinates of the visit and the POI:

Sv,p =

{
|Ev,p|

d(v,p)0.75 if |Ev,p| ≥ 2,

0 otherwise
(4.1)

38

where |Ev,p| is the cardinality of Ev,p, d(v, p) is the Euclidean distance between v

and p and the empirically-chosen constant 0.75 discounts p with distance. This

scoring function requires that |Ev,p| ≥ 2 for the POI to be considered, i.e. W v and

W p must have at least two words in common.

4. If at least one POI in P v has a match score of greater than 0, assign the single

highest-scoring one to the visit. Otherwise, leave the visit unlabelled.

Starting with the 19.5 million photos taken in the top 200 cities, the visit creation

and labelling process yielded 4.4 million visits, 1, 431, 234 of which were labelled. How-

ever, manual inspection of the labelled dataset revealed that roughly one third of POI

assignments were incorrect, which I found could largely be attributed to the visit words

originating from Yahoo! ’s own WOEID tags. While I had expected this information to

assist the labelling process, it was often running counter to the far more reliable con-

tent in users’ own titles, descriptions and tags. In the original YFCC100M, the method

by which POI-level WOEID tags are assigned is entirely opaque, and my findings here

indicate that its accuracy is poor.

For this reason, I removed all WOEID tag information from the visit words and

repeated the labelling process. In the language of binary classification, this change had

the effect of greatly increasing the POI assignment precision, at the cost of lower recall:

the total number of labelled visits was reduced to 977, 745.

4.5 Label Bootstrapping via Word Likelihood Ratios

The operations outlined in the previous section yielded a labelled visit dataset that was

of high quality, but utilised only a small fraction of the photos taken in each city. For this

reason, I devised a bootstrapping approach that makes use of information from already-

labelled visits to label additional visits.

Returning once more to the example of Cabot Tower in Bristol, the specific visit shown

in Table 4.1, and the aforementioned POI words {cabot, tower, william, venn, gough,

folly, attraction} from OSM: the evidence Ev,p here is {cabot, tower, folly}.
Given this evidence, and the close proximity of the visit coordinates to those of the

Cabot Tower entity in OSM, the visit would be labelled with this POI over any other.

Crucially, those visit words that do not form part of the evidence ({brandon, hill,

park...) should not be ignored, since they may indicate other descriptive words and

features that pertain to the POI, but are not on the OSM database. While one labelled

visit from a single user provides little benefit, a statistical analysis of many visits could

be a robust indicator of the most relevant descriptive words for each POI, which in turn

can be used to identify additional visits which may have taken place there. With these

39

observations as motivation, I implemented the following bootstrapping algorithm that

operated on city-level datasets:

1. Load a pre-existing dataset of visits for a city, a fraction of which will already be

labelled with POIs by the method described in section 4.4.3.

2. Iterate through every visit in the city, both labelled and unlabelled, and maintain a

running count of the appearances of all elements in the sets of visit words.

3. Once all visits have been seen, discard any words with fewer than 3 appearances.

Divide the count values by the total number of visits to obtain a set of city-wide

word frequencies F ∗.

4. For each POI p, iterate through only those visits that have been labelled with p

and similarly compute word counts and frequencies. Again discard words with fewer

than 3 appearances. If a single user has visited p more than once, also discard any

repeated words to avoid a potential source of bias. This yields a set of POI-specific

word frequencies F p.

5. Divide each frequency value in F p by the corresponding value in F ∗ to give a

likelihood ratio that indicates how much more likely the word is given p, versus

in the city as a whole. Discard any words with a likelihood ratio of less than 10,

yielding a set of (word, ratio) pairs Rp. Table 4.2 shows the highest-ratio words in

Rp for three arbitrary POIs in the dataset.

6. Iterate through the unlabelled visits. For each visit v, assemble a shortlist of nearby

POIs P v, as during the primary labelling process.

7. For each POI p ∈ P v, sum the likelihood ratios in Rp for the elements in W v,

skipping any words that do not appear at all. Denote this sum the ratio sum rv,p.

8. Compute a bootstrap match score Sv,p
b as a function of both the ratio sum and the

distance between the coordinates of the visit and the POI:

Sv,p
b =

rv,p

d(v, p)0.1
(4.2)

where d(v, p) is the Euclidean distance between v and p and the empirically-chosen

constant 0.1 discounts p with distance (far less harshly than in primary labelling).

9. If at least one POI in P v has a bootstrap match score of at least 30, assign the

single highest-scoring one to the visit. Otherwise, leave the visit unlabelled.

40

Table 4.2: Words with the highest likelihood ratios for three POIs in the dataset.

POI (p) City Top five highest-ratio words in Rp, with values shown.

SS Great
Britain

Bristol {(transatlantic, 70.2), (stern, 61.5), (steamship,

61.5), (propeller, 61.5), (screw, 61.5)}
Camp Nou Barcelona {(futebol, 221.5), (supercopa, 196.9), (bojan,

177.2), (marcador, 168.7), (lionel, 147.6)}
Deutsches
Museum

Munich {(astronaut, 229.6), (rockets, 229.6), (pendulum,

191.3), (foucault, 191.3), (physics, 143.5)}

I determined values for the various constants used in the algorithm through a process

of experimentation; these values were seen to maximise the proportion of true positive

labels while minimising false positives.

The high-ratio words for the exemplar POIs in Table 4.2 hint at the potential effec-

tiveness of this bootstrapping algorithm with my dataset. Words with high likelihood

ratios tended to align intuitively with how a human with good knowledge of a particular

POI may describe it. There were also many interesting cases of high-ratio words that a

human may not think to include. For sports stadia, the abbreviation vs had a consis-

tently high ratio across many cities, and accordingly its presence in Wv for an unlabelled

visit seen as a strong indicator that the user was indeed at a stadium. For zoos, the

names of various wild animals (e.g. cheetah, kangaroo, capybara) were similarly useful.

Bootstrapping also increased the degree of multi-lingual support; English translations of

foreign POI names often had some of the highest likelihood ratios.

Overall, bootstrapping increased the number of labelled visits to 1, 277, 112, an im-

provement of 31% over the non-bootstrapped dataset.

4.6 Final Dataset

The final form of the travel histories dataset consists of 1.3 million POI-labelled visits

made by 64, 826 Flickr users in 200 cities across the world. Figure 4.2 shows the distri-

bution of labelled visit counts across all cities. The degree of variability in per-city visit

counts is significantly larger than for the photo counts shown in figure 4.1, varying from

109, 615 for New York City to just 13 for Las Pavas in Colombia. That said, a significant

majority of the cities (ranks 28 to 163) have between 1, 000 and 10, 000 visits.

The dataset is stored as a single 59MB JSON file with the following schema:

41

New York, NY (1)

Bristol, UK (51)

Las Pavas, CO (200)

Figure 4.2: Distribution of labelled visits in the 200 most popular cities in the YFCC100M
dataset. Annotations indicate rankings of several of these cities.

{

‘Users’: {

‘User ID’: {

‘City’: {

‘Total Num Photos’:__

‘Visits’: [

{‘POI’:__, ‘Start’:__, ‘End’:__, ‘Num Photos’:__},

...

]

},

...

}

}

‘POI Categories’ : {

‘POI’:__

...

}

‘POI Locations’ : {

‘POI’:[__,__],

...

}

}

The core elements of the dataset are individual visits. Each visit entry contains

the POI (as represented by the unique OpenStreetMap identifier), the start and end

timestamps in yyyy-mm-dd HH:MM:SS format, and the number of photos taken. Visits

42

are categorised at the highest level by user, then by city, and placed in chronological

order within each city. The dataset also includes:

• The total number of photos taken by each user in each city, including those in visits

that have not been labelled. In rare cases, a user has non-zero photos in a city but

zero labelled visits, in which case their Visits list is empty ([]).

• Separate subschemas containing the category name and coordinates ([latitude, lon-

gitude]) of each POI. These do not need to be sorted by city since each POI identifier

is globally unique.

4.7 Data Quality Assessment

Before embarking on the implementation stage of the project, I sought to estimate the

quality and cleanliness of the dataset through a variety of means, in order to demonstrate

that it would be suitable for use within the city- and POI-level recommender systems.

4.7.1 Manual Inspection

The first and most straightforward mode of assessment was to sample a small number

of labelled visits from the dataset, identify the photos from which each was assembled,

find these photos on Flickr, and manually check whether the POI assigned during the

labelling process matched the true location. For each of the 200 cities, I sampled one

visit at random, since this would avoid biasing the assessment towards the most popular

destinations (which tend to be in European or English-speaking countries). In a handful

of cases, the photos were no longer available on Flickr, which generally indicated that the

originating user had deleted their account. In such cases, I sampled another visit from

the same city.

Table 4.3 shows five of the visits labelled assessed. The visits in Bologna, Düsseldorf

and Santiago are definitively correct, and it is worth noting how the bootstrapping algo-

rithm has been used in the first two of these cases to identify a POI based on an informal

English-language description (two leaning towers) or the reason for which it is known (as

a building [gebäude] designed by famed architect, Frank Gehry). The visit in Singapore

has been incorrectly labelled, since the photo shown was taken on a road with the same

name as the assigned park. The visit in Bristol is somewhat ambiguous: the cottage

pictured is a former constituent of the Blaise Castle Estate, but is not the castle itself.

Table 4.4 summarises the statistical results of my survey of 200 labelled visits. In

cases where the label was not definitively correct, I attempted to classify the nature of

the error or uncertainty. Three classes of erroneous cases emerged. In the first, the

true and assigned POI were near to each other, and both named after the same person,

43

Table 4.3: Five labelled visits from the dataset, including a selected photo from each
that illustrates the location. The POI assigned during labelling is shown, alongside its
category, as well as the set of words used as evidence. “BS” indicates that the visit was
labelled in the bootstrapping stage rather than in the initial sweep through the dataset.
The Y/N column shows whether the visit has been correctly labelled (Y = yes; N = no;
∼Y = ambiguous).

City Assigned POI Evidence Example Photo Y/N

Bologna Asinelli Tower
(tower)

{two, leaning,

towers} (BS)
Y

Bristol Blaise Castle
(castle)

{blaise,
castle,

estate}

∼Y

Düsseldorf Neuer Zollhof
(building)

{frank,
architect,

gebäude} (BS)

Y

Santiago Palacio
de La Moneda
(attraction)

{palacio, de,

la, moneda}
Y

Singapore Ann Siang Hill
Park (park)

{ann, sing,

hill}
N

44

Table 4.4: Classification of 200 labelled visits considered in manual assessment.

Classification Count
Definitively correct 152
Ambiguous: assigned POI too specific 8
Ambiguous: POI not shown but mentioned 5
Incorrect: shared place/area name 4
Incorrect: inaccurate location 6
Incorrect: assorted unlucky keywords 11

organisation or area. In the second, the coordinates of the visit were inaccurate, so the

true POI was outside of the search radius of the labelling algorithm. In the third, the set

of visit words was simply ‘unlucky’ in that it contained more matches to the incorrect

POI than the true one. There were also two kinds of ambiguous case: those in which the

assigned POI represented only one specific part of the location that was actually visited

(e.g. a single university building or monument in a town square), and those in which

the originating Flickr user alluded to having visited the assigned POI in the photo title

or description, but it was not visible in the photo itself. In the aggregate, this small-

scale manual assessment suggests that the dataset boasts between 76% and 85% labelling

precision, depending on how strictly a ‘correct’ label is defined.

4.7.2 Statistical Properties

It is unreasonable to expect that the integrity of a dataset of 1.3 million labelled visits

can be fully assessed using a sample size of just 200. For that reason, I analysed the

statistics of the dataset to determine whether it was consistent with expectations derived

from general domain knowledge. This in turn would provide evidence against large-scale

systematic errors. Specifically, my expectations were that:

• Different POI categories would be popular at different times of the day and year;

• POIs that are widely known as ‘top attractions’ would receive the most visits.

Diurnal and Seasonal Visitation Patterns

To assess agreement with the first expectation, I collected all labelled visits to a selection

of popular POI categories for which pronounced diurnal or seasonal variations in popular-

ity seemed likely (e.g. restaurants, parks, museums, bars and beaches) and constructed

histograms of the hour or month component of the start time3. Figure 4.3 contains the

diurnal visitation trends for twelve POI categories of interest, and figure 4.4 contains the

seasonal trends for nine categories.

3For Southern Hemispheres, dates were shifted by 6 months as initially described in section 3.2.1.

45

Figure 4.3: Distributions of the hour component of visit times for twelve POI categories.

46

Figure 4.4: Distributions of the month component of visit times for nine POI categories.

Looking first at figure 4.3, the following trends are visible that align well with ex-

pectation. As outdoor public spaces, beaches and parks are visited throughout the day,

with smoothly-varying distributions that peak in mid-afternoon. The former also shows a

minor peak in the early morning, which may be due to visitors wishing to capture images

of sunrise. In contrast, aquaria and zoos are attractions with clearly-defined daytime

opening hours, and their distributions share sharp rises and falls. Restaurants show two

clear peaks in attendance around lunch and dinner, while stadia have a sharp spike to

match the common early-evening fixture time of sporting matches. A smaller spike is

also visible around the most popular showing time of theatres. Pubs are visited during

lunchtime and throughout the afternoon and evening. Their popularity drops off sharply

around 9pm, which coincides with a sharp increase in the number of visits to nightclubs.

Meanwhile, casinos are attended at all hours, with a surge in the late evening that is

sustained until well past midnight. The fact that all categories, including overtly day-

time ones, show non-negligible visitation in the small hours of the morning is probably

attributable to cameras with miscalibrated timezones.

In general, the seasonal variations in visit frequency shown in figure 4.4 are less

dramatic than the diurnal ones. However, more visits are recorded in summer months

than winter months, aligning with the typical pattern of tourism. Summer peaks are

particularly visible for beaches, ice cream sellers, and to a slightly lesser extent, theme

parks. Ice rinks present a dramatic exception, being most popular in the middle of winter,

47

while gardens are most frequently attended around the springtime bloom. Stadia are more

popular in summer, the height of the sporting calendar in many countries. Visits to places

of worship are relatively constant throughout the year, with a small increase towards a

maximum around Easter. Finally, the fact that both universities and nightclubs exhibit

peaks during academic term times seems unlikely to be a coincidence.

Top Attraction Agreement

In the second statistical assessment method, I compared an externally-sourced ranking

of popular tourist sites (specifically, the ‘Top 10 Attractions’ section on TripAdvisor.com

[51]) with the ranking of POI visits within the dataset in a selection of cities4. I used ten

cities for this assessment, the results of which are shown in table 4.5.

Out of the 100 top attractions listed in the table, 36 also appear in the top 10 of their

respective city rankings by number of labelled visits, and 52 appear in the top 20. These

statistics suggest that renowned POIs do indeed receive amongst the highest visitation

in the dataset, as expected. In 19 instances, no corresponding POI could be found for

an attraction, most notably in the city of Osaka. This is largely due to the limitations of

the OpenStreetMap service; not every attraction has a corresponding POI on the OSM

database with the same name. In addition, several extremely famous POIs, such as

the Musee de l’Orangerie in Paris and Imperial Palace in Vienna, appear surprisingly low

down the popularity rankings. Such occasional omissions are likely unavoidable, since my

dataset creation method relies on the photo-upload habits of a random selection of Flickr

users, including the reliable mentioning of correct POIs in titles, descriptions or tags. In

general, however, this assessment provided good evidence that the dataset features most

popular POIs in appropriate quantities.

4While I used exactly the top 10 TripAdvisor attractions where possible, I skipped cases where the
listed entries were ephemeral events (e.g. the Edinburgh Military Tattoo), loosely-defined areas (e.g.
Budapest Old Town), or locations outside of the city proper.

48

Table 4.5: TripAdvisor top attraction lists for ten cities, with corresponding popularity ranks in the travel histories dataset. A dash
indicates that no corresponding POI exists in the dataset.

Chicago (1272 POIs) Paris (2194 POIs) Budapest (454 POIs) Delhi (188 POIs) Edinburgh (693 POIs)
Art Institute 2 Musee d’Orsay 12 Hungarian Parliament 5 Qutub Minar 11 Arthur’s Seat 16
Millenium Park 4 Notre-Dame 3 Halaszbastya - Gurudwara

Bangla Sahib
14 Royal Yacht Brittania 45

Museum of Science
and Industry

22 The Louvre 2 St Stephen’s Basilica 1 Swaminarayan
Akshardham

115 National Museum
of Scotland

8

360 Chicago 6 Saint-Chapelle 24 Buda Castle 30 Humayun’s Tomb 7 Edinburgh Castle 3
Cloud Gate 1 Eiffel Tower 1 Shoes on the Danube 50 Lodhi Garden 36 Camera Obscura 21
Wrigley Field 7 Palais Garnier 17 Margaret Island 193 Chandni Chowk 12 Royal Mile 2
Magnificent Mile - Seine River - Gellert Hill 20 India Gate 5 Palace of

Holyroodhouse
50

Chicago Riverwalk 20 Arc de Triomphe 6 Varhegy 182 Rashtrapati Bhavan - Calton Hill 6
Field Museum 9 Musee de l’Orangerie 137 Szechenyi Chain

Bridge
2 Mughal Garden - Royal Botanic Garden 9

Chicago Cultural
Center

25 Montmarte 25 Matthias Church 7 Hauz Khas Village 25 Forth Road Bridge -

Glasgow (400 POIs) Osaka (115 POIs) Perth (255 POIs) Toronto (1120 POIs) Vienna (623 POIs)
Kelvingrove Museum 1 Osaka Castle Park 5 Kings Park

and Botanic Garden
21 Ripley’s Aquarium

of Canada
146 Schonbrunn Palace 15

Riverside Museum 14 Kuchu Teien
Observatory

- The Perth Mint - Royal Ontario Mu-
seum

11 Kunsthistorisches
Museum

10

Glengoyne Distillery 53 Osaka Aquarium 1 The Bell Tower 5 CN Tower 2 Tiergarten
Schoenbrunn

6

University of Glasgow 56 Kids Plaza - State War Memorial 7 St Lawrence Market - Imperial Palace 244
Celtic Park 26 National Bunraku

Theater
- Lotterywest

Federation Walkway
100 Hockey Hall of Fame 16 Belvedere Museum 20

The Necropolis - Mint Museum - Art Gallery of Western
Australia

4 Art Gallery of Ontario 9 Albertina 11

Tenents Wellpark
Brewery

- Nakanoshima Park - Queens Gardens 249 Steam Whistle
Brewery

78 Natural History
Museum

8

The Clydeside
Distillery

- Sumiyoshi Taisha
Shrine

51 Scitech - High Park 18 Wiener Staatsoper 2

Glasgow Botanic
Gardens

5 Tempozan Ferris
Wheel

- Hyde Park 11 Casa Loma 29 St. Stephen’s
Cathedral

134

Glasgow Science
Centre

3 Kuromon Market - RAC Arena 148 Rogers Centre 3 Leopold Museum 53

49

4.7.3 Comparison to Existing Dataset

As part of one prior work identified in the literature review [41], Lim et al. assembled and

published a dataset of travel histories based on YFCC100M. In this dataset, Wikipedia

is used as the source of ground-truth POI names and locations instead of OSM. The

labelling process is also simpler: photos are considered individually rather than grouped

into visits, POIs are assigned based on physical proximity alone, and user-provided titles,

descriptions and tags are not utilised. Finally, the dataset concerns just eight cities

instead of 200. These cities are Budapest, Delhi, Edinburgh, Glasgow, Osaka, Perth,

Toronto and Vienna; the latter eight shown in table 4.5. Table 4.6 compares the size of

this dataset (B) to the corresponding subset of the dataset created in this project (A)

in terms of the number of photos used to create it (i.e. those both inside and outside of

labelled visits in the case of A), and the number of users, POIs and visits.

Table 4.6: Size comparison of travel histories dataset used in this project (A) with dataset
created by Lim at al.

Photos # Users # POIs # Visits
A B A B A B A B

Budapest 93849 36000 868 935 454 39 3880 18513

Delhi 36016 13919 395 279 188 26 1521 3993

Edinburgh 144038 82060 1816 1454 693 29 12007 33944

Glasgow 68034 29019 747 601 400 29 3804 11434

Osaka 48711 392420 133 450 115 29 273 7747

Perth 64882 Not stated 252 159 255 25 922 3643

Toronto 281633 157505 2115 1395 1120 30 16681 39419

Vienna 169611 85149 1445 1155 623 29 7784 34515

Total 906774 >796072 7771 6428 3848 236 46872 153208

Aside from containing a comparable number of users, A and B have quite dramatic

statistical differences. In A, I consider more POIs (hundreds per city as opposed to

roughly 30 of the most popular ones). In B, a higher proportion of photos are mapped

into visits (18.7% instead of 5.2%). As a consequence, B has many more visits per POI

on average. However, due to the less sophisticated labelling process used in B, there is

a far greater risk of each visit being erroneous (i.e. the originating Flickr user did not

actually visit the assigned POI).

Following the same method described in section 4.7.1, I manually assessed a selection

of visits in B by viewing the corresponding photo on Flickr. For each of the eight

cities I checked 25 visits, bringing the total to 200 (matching the previous assessment

of my dataset A). Table 4.7 contains the results, with a slightly different categorisation

of ambiguous cases. Without inside knowledge of the dataset-generation process, I was

unable to diagnose and categorise the incorrect cases.

This assessment indicates that the reliability of POI assignment in B is significantly

50

Table 4.7: Classification of 200 visits in dataset created by Lim et al.

Classification

B
u

d
ap

es
t

D
el

h
i

E
d

in
b

u
rg

h

G
la

sg
ow

O
sa

ka

P
er

th

T
or

n
to

V
ie

n
n

a

T
o
ta

l

Definitively correct 9 22 8 5 12 7 18 10 91

Ambiguous: assigned POI too specific 0 0 0 4 0 0 0 1 5

Ambiguous: POI nearby 2 0 5 0 3 2 2 0 14

Ambigious: no clear POI shown 4 0 1 0 2 2 0 0 9

Incorrect 10 3 11 16 8 14 5 14 81

below that of A. Depending on which ambiguous cases are considered acceptable, the

precision lies between 46% and 60%, which is on the order of 20-30% lower. Therefore,

despite the smaller number of per-city and per-POI visits, A certainly appears to be a

higher quality dataset in terms of accuracy. It also has the additional benefit of scale,

covering 200 cities instead of eight, providing greater opportunity for the quantification

of global trends as explored in this project. I concluded the assessment process with

confidence that my travel histories dataset was suitable for use with the city- and POI-

level recommender models.

51

Chapter 5

Application of Models to Dataset

With both the structure of the recommendation models and the travel histories dataset

in place, the next stage of the project was to manipulate the data into a form that could

be fed into the various equations, and implement and optimise the models themselves.

5.1 Implementation Notes

All implementation work completed in this project was done in the Python programming

language, with frequent use of the pandas library for data manipulation, as well as numpy

for mathematical operations and scipy for statistical analysis. Rather than implementing

the models with a view towards efficient end-user deployment, for example with the

aid of a graphical user interface, I prioritised ease-of-evaluation on the static dataset of

travel histories. For example, where I had conceived of multiple models or techniques for

performing the same operation, I ran them all simultaneously and collected results from

each. Since the travel histories dataset is far more compact than the original YFCC100M

data from which it was derived (59MB compared with 16.4GB), I was able to deploy all

necessary scripts on my personal computer, thereby accelerating development time.

5.2 Construction of Data Structures

5.2.1 City Recommendation

Each of the abstract mathematical objects introduced in section 3.1.1 needed to be em-

bodied as a Python data structure. I constructed these data structures from the JSON-

format dataset as follows1:

1As latent objects, the potential enjoyment functions enjt could not be derived directly from the
dataset. Section 6.1.1 describes how I emulated the values for evaluation purposes.

52

• The set of tourists T = {t1, ..., tk} = the set of all User ID values, so that k =

64, 826.

• The tuple of cities C = (c1, ..., cl) = the set of all City values, alphabetical order.

Since the dataset contains 200 cities, l = 200.

• The tuple of POI categories X = (x1, ..., xm) = the set of values in POI Categories

whose constituent POIs appear at least 500 times across the dataset, in alphabetical

order. In the final dataset, m = 74.

• For a tourist t, the set of visited cities Vt = {c1, ..., ca} = the set of all City keys

in the corresponding subschema of the dataset. Depending on the tourist, the

cardinality varies from a = 1 to a = 64.

• For a tourist t, the set of unvisited cities Ut = {c1, ..., cb} = set(C)− Vt.

• For a tourist t, the vector of city enjoyment values et = [et
1, ..., e

t
l] = a function of

the total number of photos (not labelled visits) uploaded by that tourist in each

city. My underlying assumption here was that tourists upload more photos of cities

that they find more enjoyable and wish to remember more vividly. Rather than

taking the photo count values directly, I defined et as:

et =
at

||at||
where ∀i ∈ [1..l] at

i =

√√√√√√√
(

#tCi∑l
j=1 #tCj

)
(∑

t′∈T #t
′
Ci∑

t′∈T
∑l
j=1 #t

′
Cj

) (5.1)

and #t
Ci is the number of photos uploaded by tourist t in city Ci, i.e. the ‘Total

Num Photos’ value in the corresponding subschema of the dataset. This equation

computes the proportion of the tourist’s photos taken in each city (numerator),

expressed as a ratio of the global proportion of photos in that city (denominator).

Using the global proportions in this way avoids biasing towards the most popular

cities. My rationale here was that many tourists have been to London, Paris or

New York, so the fact that two individuals have been there says little about their

similarity, whereas common visits to, for example, Bologna is a stronger indicator

of common preferences. The square root is used to reduce the variability of these

values – it seems unlikely that a tourist who has uploaded twice as many photos of

a city enjoyed it twice as much – and the normalisation is important to ensure that

et is a valid probability distribution.

• For a tourist t, the vector of POI category preference values pt = [pt
1, ...,p

t
m] = a

function of the total number of photos uploaded by that tourist as part of labelled

53

visits to each category in X (i.e. only those with at least 500 visits in total). This

rests on a similar assumption to the one used for et and as such, I defined pt in a

similar manner:

pt =
bt

||bt||1
where ∀i ∈ [1..m] bt

i =

(
#tXi∑m
j=1 #tXj

)
(∑

t′∈T #t
′
Xi∑

t′∈T
∑m
j=1 #t

′
Xj

) (5.2)

and #t
Xi is the total number of photos uploaded by tourist t within visits to category

Xi . My rationale here was again largely the same as that for equation 5.1: common

visits to less popular POI categories such as ice rinks or casinos are more informative

than common visits to museums or places of worship. I opted to exclude the square

root in this equation, because there was less extreme variability in per-category

photo counts compared with per-city.

• For a city c, the vector of POI category importance values ic = [ic1, ..., i
c
m] = a

function of the total number of photos uploaded in that city as part of labelled

visits to each category in X. Mirroring the definition of pt, I defined ic as:

ic =
cc

||cc||1
where ∀i ∈ [1..m] cc

i =

(
#cXi∑m
j=1 #cXj

)
(∑

c′∈C #c
′

Xi∑
c′∈C

∑m
j=1 #c

′
Xj

) (5.3)

and #c
Xi is the total number of photos uploaded in city c within visits to category

Xi. Yet again, the use of ratios with respect to global proportions is important here:

many cities have museums, but relatively few have popular beaches, so it makes

sense to boost the importance of the latter.

5.2.2 POI Recommendation

In addition to some of those data listed above, the abstract mathematical objects in-

troduced in section 3.2.1 also needed to be embodied as Python data structures. I con-

structed these data structures from the JSON-format dataset as follows2:

• For a city c, the set of POIs Pc = {p1, ..., poc} = the set of POI values that appear

within Visits lists for that city.

• The POI → category mapping function cat = looking up the POI in the POI

Categories subschema of the dataset.

2As in the city recommendation problem, the potential enjoyment functions enjt,now could not be
derived directly from the dataset. Section 6.1.2 describes how I emulated the values for evaluation
purposes.

54

• The POI → location mapping function loc = looking up the POI in the POI

Locations subschema of the dataset.

• For a tourist t and city c, the tuple of POI visits Ht,c = (v1, ..., vqt,c) = the corre-

sponding Visits list. If c does not appear as an entry in t’s subschema, or if the

Visits list is empty, Ht,c = ().

The poi, startTime and endTime functions required no explicit definition since this

information is contained within the Visits lists themselves. For month and hour, I

parsed the required values from the full timestamps using the datetime Python library,

and made the requisite 6-month date shifts for Southern Hemisphere POIs.

5.2.3 Algorithmisation of Models

5.2.4 City Recommendation

The construction of the required data structures was the most challenging task faced

during implementation of the city recommender models, and the rest mostly involved

substituting the values into the various equations presented in section 3.1. Algorithm 1

outlines the complete operation of the Python script I wrote to generate city rankings for

a tourist group3 G. It returns tuples representing rankings of all unvisited cities in order

of recommendation score according to each of the three recommender models, with each

of the two group aggregation methods.

To further illustrate the operation of the recommender algorithm, the following is an

example of an arbitrary group of real tourists taken from the dataset, and the various city

rankings output by the system. The group consists of three tourists, with Flickr photo

upload histories as shown in table 5.1.

Table 5.2 contains the top 5 cities in the rankings created for this group by the system.

For the tourist-tourist model (TT) the neighbourhood size n was set to 50, and for the

group profile vectors and city scores sum-based aggregation was used throughout.

In all of the rankings, historic northern European cities appear near the top, with

Cologne occupying the number 1 spot in the tourist-tourist and tourist-city rankings, and

Salzburg placing first in the city-city rankings. German cities are particularly prevalent,

a good result given that all three tourists have visited at least one place in Germany

in the past. The recommendations also appear reasonable with respect to the tourists’

POI category visitation: many of the highly-ranked cities are famed for their historic

architecture including city gates; beer gardens are extremely prevalent in Germany and

neighbouring countries; both Salzburg and Cologne are riverside cities with tourist ferries;

and Cologne is home to an internationally-renowned zoo. While such observations are

3The same script also works in the single-tourist case. If only one User ID is specified, the steps
pertaining to the group recommendation problem are skipped.

55

Algorithm 1: City recommendation for a multi-tourist group

inputs : the JSON-format dataset file; a set of User ID values G to define the
tourists in the group

outputs: city rankings from each of the three recommender models, with each of
the two group aggregation methods if |G| > 1

// Assemble data structures

T← set of all User ID values in the dataset;
C← tuple of unique City values, alphabetical order;
X← tuple of unique POI Category values with ≥ 500 visits, alphabetical order;
for t ∈ T do

et ← vector derived from per-city photo counts for t (equation 5.1)

for t ∈ G do
Vt ← set of all cities with at least 1 photo by t;
Ut ← set(C)− Vt;
pt ← vector derived from per-category photo counts for t (equation 5.2)

for c ∈ C do
ic ← vector derived from per-category photo counts for c (equation 5.3)

// Run recommender models for each tourist in the group

for t ∈ G do
for t′ ∈ T−G do

sim(t, t′)← function of JSD(et||et′) (equation 3.5)

Nt ← set of n most similar tourists to t;
for i : Ci ∈ Ut do

for c′ ∈ Vt do

sim(Ci, c
′)← function of JSD(iCi ||ic′) (equation 3.7)

sim(t,Ci)← function of JSD(pt||iCi) (equation 3.9);

St
TT (Ci)← function of [et′

i and sim(t, t′) ∀t′ ∈ Nt] (equation 3.6);
St
CC(Ci)← function of et

i and [sim(Ci, c
′) ∀c′ ∈ Vt] (equation 3.8);

St
TC(Ci)← sim(t,Ci) (equation 3.10)

Rt
TT , Rt

CC and Rt
TC ← U t ordered by St

TT , St
CC and St

TC respectively

continued overleaf...

56

if |G| > 1 then
// Assemble components of group profile

VG ← union of Vt sets ∀t ∈ G (equation 3.13);
UG ← intersection of Ut sets ∀t ∈ G (equation 3.11);
eG ← sum/max aggregation of [et ∀t ∈ G] (equation 3.14);
pG ← sum/max aggregation of [pt ∀t ∈ G] (equation 3.15);

// Run recommender models for group profile (AoP)
Same method as for individual tourists; yields RG

TTP , RG
CCP and RG

TCP ;

// Combine individual town rankings into group rankings (AoS)
for c ∈ UG do

SG
TTR(c)← sum/max aggregation of [St

TT (c) ∀t ∈ G] (equation 3.12);
SG
CCR(c)← sum/max aggregation of [St

CC(c) ∀t ∈ G] (equation 3.12);
SG
TCR(c)← sum/max aggregation of [St

TC(c) ∀t ∈ G] (equation 3.12)

RG
TTR, RG

CCR and RG
TCR ← UG ordered by SG

TTR, SG
CCR and SG

TCR respectively;

return RG
TTP , RG

TTR, RG
CCP , RG

CCR, RG
TCP , RG

TCR

else
return Rt

TT , Rt
GG and Rt

TG where G = {t}

Table 5.1: Summary of upload histories for three tourists in exemplar group. Top 3 POI
categories shown for each tourist.

Tourist A Tourist B Tourist C

Total # Photos 250 236 679

Photos by City Paris: 66
Berlin: 60
Duesseldorf: 49
Munich: 35
San Francisco: 25
Frankfurt: 15

Brussels: 41
Duesseldorf: 43
Florence: 15
Lisbon: 33
Paris: 85
Rome: 19

Berlin: 70
Dresden: 64
Duesseldorf: 42
Hamburg: 77
Helsinki: 21
Munich: 241
St. Petersburg: 85
Vienna: 79

Photos by POI
Category

Heritage: 23
Beer Garden: 14
Wood: 12
...

Wood: 51
Heritage: 36
Park: 20
...

City Gate: 67
Ferry Terminal: 55
Zoo: 46
...

57

Table 5.2: Top 5 cities in rankings for the group generated by each model, with each
aggregation method.

RG
TTP RG

CCP RG
TCP

1. Cologne
2. Moscow
3. Stuttgart
4. Salzburg
5. Venice

1. Salzburg
2. Krakow
3. Stuttgart
4. Barcelona
5. Antwerp

1. Cologne
2. Hamburg
3. Birmingham
4. Dresden
5. Houston

RG
TTR RG

CCR RG
TCR

1. Cologne
2. Amsterdam
3. London
4. Stuttgart
5. Salzburg

1. Salzburg
2. Krakow
3. Stuttgart
4. Barcelona
5. Antwerp

1. Cologne
2. Moscow
3. Houston
4. Dublin
5. Manchester

promising, this discussion is far from a rigorous performance evaluation, which is reserved

for subsequent chapters.

5.2.5 POI Recommendation

As mentioned in section 3.2.9 I chose to implement the POI recommendation model

for a single tourist t, due to both time constraints and difficulties with adapting my

evaluation method to groups. As with the city recommender, I implemented the equations

in section 3.2 in a single Python script, whose operation is summarised in algorithm 2.

It returns a single tuple representing a ranking of all POIs in the target city c in order of

recommendation score according to the model.

To further illustrate the operation of the recommender algorithm, the following is an

example of an arbitrary tourist from the dataset who has visited London on two separate

occasions, and a ranking of POIs to visit next (i.e. in continuation of the second of these

trips) output by the recommender system. The relevant aspects of the tourist’s Flickr

photo upload history are shown in table 5.3.

Table 5.4 contains the top 10 POIs in the ranking created for this tourist by the

system, assuming a visit at 17:30 on the 6th of April 2012, around an hour after the

most recent visit in their history. Since I have not yet described the method used for

training the machine learning-based scoring techniques (this is presented in section 6.2),

the scores were computed by the simple summing method Sum. When calculating the

features themselves, the following hyperparameter values were used:

α = 100 β = 2000 γ = 100 ζ = 0.1 κ = 24

Without going into too much detail about the reasonableness of these results: most

of the POIs shown are popular tourist attractions in close proximity to the Tate Modern

58

Algorithm 2: POI recommendation for a single tourist

inputs : the JSON-format dataset file; a single User ID value t, City value c,
and timestamp now to define the recommendation scenario

outputs: a POI ranking from the hybrid model

// Assemble data structures

T← set of all User ID values in the dataset;
C← tuple of unique City values, alphabetical order;
X← tuple of unique POI Category values with ≥ 500 visits, alphabetical order;
for t′ ∈ T do

for c′ ∈ C do
Ht′,c′ ← tuple equal to the corresponding Visits list

Pc ← set of POI values that appear within Visits lists for c;
pt ← vector derived from per-category photo counts for t (equation 5.2);
for x ∈ X do

chHisthour(now)(x)← x’s visit count for hour(now) (equation 3.21);
cmHistmonth(now)(x)← x’s visit count for month(now) (equation 3.25);

// Compute recommendation score for each POI in the city

for p ∈ Pc do
// Overall popularity feature

fPop(p)← function of unique visitors to p (equation 3.17);

// Preference-aware feature

fCatpt(p)← corresponding element of pt (equation 3.18);

// Context-aware features

fProxHt,c(p)← function of distance to loc(p) (equation 3.20);
phHisthour(now)(p)← p’s visit count for hour(now) (equation 3.23);

fTimehour(now)(p)← function of time histogram values (equation 3.24);
pmHistmonth(now)(p)← p’s visit count for month(now) (equation 3.26);

fDatemonth(now)(p)← function of date histogram values (equation 3.27);

// History-aware features

fHistHt,c(p)← 0;
for p′ ∈ {poi(v) : v ∈ Ht,c} do

coinc(p, p′)← separation-weighted coincidence count (equation 3.28);
fHistHt,c(p)← fHistHt,c(p) + coinc(p, p′) weighted by time elapsed since
most recent visit (equation 3.29)

// Scoring and ranking

v̄t,p ← z-normalised vector of all six features (equation 3.32);
St(p)← function of v̄t,p; sum or machine learning model (section 3.2.8)

Rt ← Pc ordered by St;
return Rt

59

Table 5.3: Summary of upload history for exemplar tourist. Top 3 POI categories shown.

Previous Visits
in London

POI Name Date Start Time End Time # Photos
Natural History
Museum
Old Street Records
South Kensington
Farmers Market
Natural History
Museum
Columbia Road
Flower Market
Tate Modern

2009-11-05

2009-11-07
2009-11-08

2012-04-05

2012-04-05

2012-04-06

14:42:30

19:11:07
10:42:52

12:28:23

14:33:33

14:17:01

16:36:46

19:11:07
11:18:20

12:28:23

14:50:53

16:26:56

5

1
3

1

2

6

Other Cities
Visited

Berlin (9 visits) Stockholm (4 visits) Paris (2 visits)

Photos by
POI Category

Attraction: 24 Arts Centre: 13 Museum: 7 ...

Table 5.4: Top 10 POIs in ranking for the tourist generated the model, with Sum scoring
method. Features z-normalised using statistics from a large body of other recommenda-
tion scenarios. All values given to 2 significant figures.

POI Name
Z-normalised Feature Values

Score
fPop fCat fProx fTime fDate fHist

1. Millennium Bridge
2. Bank of England
3. St Paul’s Churchyard
4. South Bank Book Market
5. Shakespeare’s Globe
6. OXO Tower Wharf
7. Tate Modern Café
8. George Inn
9. Tower Bridge
10. Postman’s Park

2.3
0.69
2.5
2.3
0.93
0.59
-0.97
-0.97
2.5

-1.07

-0.068
-0.068
-0.068

0.00060
-0.068
-0.068
-0.068
-0.068
-0.019
-0.050

1.9
1.1
1.4
1.0
2.0
1.5
2.1
1.4
0.6
1.1

1.2
1.3
0.28
1.5
0.41
1.1

-0.048
-0.010
0.91
0.48

0.064
2.0
0.77
0.036
0.10
0.25
1.5
3.6
0.11
3.55

0.46
-0.25
-0.093
-0.27
0.75
0.50
1.3

-0.23
-0.48
-0.44

5.9
4.8
4.7
4.6
4.1
3.9
3.8
3.6
3.6
3.5

(the tourist’s current location), that seem suitable places to visit in an early springtime

evening – especially the two bridges and cathedral courtyard, which could provide at-

tractive ‘golden hour’ views of some of London’s most famous landmarks. As with the

city recommendation problem, a quantitative performance evaluation is contained in the

following chapters.

60

Chapter 6

Evaluation and Optimisation

Methods

The implementation work described thus far yielded systems that could generate rankings

of cities and POIs to visit for tourists in the travel histories dataset. However, in the

absence of external information there is no way to evaluate the quality of these rankings,

and in the case of the POI recommender, no source of supervision to train the machine

learning models used to map features into scores. This chapter describes how I address

these issues. My general approach is one of cross-validation: hiding parts of the dataset

from the recommender models, and recasting the recommendation problem as one of

predicting the missing data.

6.1 Evaluation Methods

6.1.1 City Recommendation

Single-Tourist Case

As per the problem definition in section 3.1.2, the aim of single-tourist city recommenda-

tion is to produce a city ranking Rt that maximises nDCG(Rt). However, since the travel

histories dataset contains no data about unvisited cities, the potential enjoyment function

enjt cannot be obtained directly. For evaluation purposes, my solution is to remove one

city (denoted the forgotten city c∗) entirely from the target tourist’s history, effectively

moving it from the visited set Vt to the unvisited set Ut and deleting any associated POI

visits. I then define enjt as follows:

∀c ∈ Ut enjt(c) =

{
1 if c = c∗,

0 otherwise
(6.1)

61

This extremely simple definition in turn reduces the nDCG equation to

nDCG(Rt) =
1

log2(r
∗ + 1)

(6.2)

where r∗ is the position of c∗ in the ranking (1 being the top position). Maximising this

metric is exactly equivalent to moving c∗ to the top of the ranking. In other words, an

ideal solution to the city recommendation problem with the travel histories dataset would

produce a ranking that has the forgotten city in first place, thereby predicting the true

travel decision of the target tourist.

Given that the rank of the forgotten city is more intuitively comprehensible than the

nDCG, and the two are functionally equivalent in this context, the results in the next

chapter use r∗ as their primary performance metric.

Multi-Tourist Group Case

For the group recommendation problem, I constrain the set of valid tourist groups to

those in which all members have at least one city in common. Formally, a group G is

valid if

IG =
⋂
t∈G

Vt 6= ∅ (6.3)

The forgotten city c∗ is chosen at random from IG and removed from the histories of all

tourists in the group. Rankings can then be evaluated in exactly the same way as in the

single-tourist cases: the higher the ranking of the forgotten city, the better.

Baseline Rankings

Alongside a cross-comparison of the three recommendation models and two group ag-

gregation methods, I baseline performance against the most näıve recommender possible

that makes use of the dataset: one that simply ranks the cities in Ut (or UG) by the

number of photos uploaded in each. To the extent that any given model consistently

outperforms this näıve approach, it must successfully be harnessing information that is

specific to the target tourist or group. As a final point of comparison, I also generate

entirely random rankings, against which all other methods can be compared.

6.1.2 POI Recommendation

As with the city recommendation problem, the aim of POI recommendation is to pro-

duce a POI ranking Rt that maximises nDCG(Rt), but the potential enjoyment function

enjt,now cannot be obtained directly. My evaluation solution in this case is to cut the

target tourist t’s history in one of their visited cities c at a specified location, and delete

62

all visits after that point. The tourist’s history in all other cities is left unaltered1. The

choice of city and cut location i (which specifies the index of the immediately preceding

visit) must satisfy the following criteria:

• The city has at least 10 POIs which have each received at least 20 unique visitors:

|P̄c| ≥ 10 where |P̄c| = {p ∈ Pc : vis(p) ≥ 20}.

• The tourist has at least two visits in c, and the cut is after the first visit but before

the last: 1 ≤ i < qt,c where qt,c = |Ht,c| ≥ 2.

• After cutting, the number of remaining visits in the tourist’s history across all cities

is at least 20:
(
i+
∑

c′∈Vt:c′ 6=c |Ht,c′|
)
≥ 20.

• The two visits which lie either side of the cut are separated in time by at most 8

hours: startTime(Ht,c
i+1)− endTime(Ht,c

i) ≤ 8h.

• The POI of the visit immediately after the cut has itself received at least 20 unique

visitors: poi(Ht,c
i+1) ∈ P̄c.

A recommendation scenario is fully specified by the the tourist t, city c and valid cut

location i. Rather than considering all POIs in the target city for recommendation, I

limit the options to those with at least 20 unique visitors (i.e. the elements of P̄c). The

POI associated with the visit immediately after the cut is denoted the forgotten POI p∗.

From this point, I define enjt,now as

∀p ∈ P̄c enjt,now(p) =

{
1 if p = p∗,

0 otherwise
(6.4)

which, as in the city recommendation problem, reduces the nDCG equation to

nDCG(Rt) =
1

log2(r
∗ + 1)

(6.5)

where r∗ is the position of p∗ in the ranking (1 being the top position). Maximising

this metric is exactly equivalent to moving p∗ to the top of the ranking. In other words,

an ideal solution to the POI recommendation problem with the travel histories dataset

would produce a ranking that has the forgotten POI in first place, thereby predicting the

true travel decision of the target tourist. Following the rationale expounded for the city

recommendation problem, I again use r∗ as the basis of my performance metric. However,

comparison of performance between cities in terms of r∗ alone could be misleading, since

they are very likely to have different numbers of POIs. For this reason, I define a general

1This is true even if the tourist has visited another city after the date at which the cut is made. This
is somewhat artificial as future travel information would not be available to a recommender system in a
real-world application, but given that it is available in the dataset, I can see no important reason why it
should not be used.

63

performance metric Q as the complement of r∗ as a fraction of the number of candidate

POIs within the target city c:

Q = 1− (r∗/|Rc|) (6.6)

Baseline Rankings

Alongside a cross-comparison of the three methods for mapping features to scores, I

evaluate ranking performance relative to a number of simple baselines. In [41], the authors

use three such baselines when evaluating their POI recommender:

• Ranking by overall popularity;

• Ranking by proximity to current location;

• Random ranking.

I partially adopt this approach, but acknowledge that my definitions of the features fPop

and fProx mean that they are monotonic in the first two of these measures respectively,

so ranking by the features themselves produces identical results. Further, I bring in the

other four individual features (fCat, fTime, fDate, fHist) as additional baselines, bringing

the total to seven (six features plus random). This approach is particularly meaningful,

since it allows individual evaluation of the efficacy of the features, and of the methods

used to combine them.

6.2 Optimisation of Machine Learning Models for

POI Scoring

The definition of a quantitative performance metric (r∗) provided the means for training

the two machine learning models for mapping POI features into recommendation scores

(Lin and NN). This part of the project constituted a learning-to-rank problem, albeit

one with weak supervision. In a fully-specified learning-to-rank problem, each item has

a unique relevance score, and the objective of training is to produce rankings that are

ordered by relevance as far as possible (as quantified by metrics such as nDCG). In this

context, the equivalent of a relevance score is enjt, which is zero for all POIs other than p∗,

meaning the notion of a ‘good’ ranking is drastically under-constrained. For this reason,

rather than seeking to guide the learning process towards a fixed, idealised end state, as

in traditional supervised learning, I framed it procedurally as the act of iteratively moving

p∗ higher in the rankings across a large set of recommendation scenarios. For both Lin

and NN , the training process proceeded as follows:

64

1. Sweep through the entire travel histories dataset and identify all recommendation

scenarios that meet the criteria given in section 6.1.2. For each (tourist, city) pair,

keep only the last qualifying scenario (i.e. the one with the highest i).

2. For each scenario (t, c, i), assemble feature vectors for all POIs in P̄c. Store these

alongside the name of the forgotten POI p∗.

3. Randomly partition the scenarios into training, validation and test sets with a

60:20:20 split. Perform z-normalisation on each set according to the method de-

scribed in section 3.2.8.

4. Randomly initialise the weights of the learning model.

5. For one scenario (t, c, i) in the training set, iterate through every POI p and feed the

corresponding feature vector v̄t,p into the machine learning model. Use the output

value as the POI’s score St(p).

6. Assemble the ranking Rt by ordering the POIs by score. Determine r∗, the rank of

the forgotten POI.

7. If r∗ = 1, skip to step 10. Otherwise, define the error e for this scenario as the

difference between the score assigned to p∗ and the score of the POI ranked ω places

higher in the ranking:

e = St(Rt
r∗−ω)− St(p∗) (6.7)

If ω = 1, the error is defined with respect to the POI ranked immediately above p∗.

If ω = r∗ − 1, it is defined relative to the top-ranked POI. A third option is for ω

to be sampled randomly from {1 .. r∗ − 1} for each scenario. The influence of this

hyperparameter is assessed in the following chapter.

8. Use e to inform two weight updates by gradient descent. In the first, use the feature

vector for p∗ and −e as the error. In the second, use the vector for p′ = Rt
r∗−ω and e

as the error. For the neural network model NN , use the backpropogation algorithm

to determine the required weight updates for neurons in the hidden layer(s). The

intended effect of these weight updates is to move p∗ higher in the ranking, and the

POI currently placed in position r∗ − ω lower in the ranking.

9. Perform two secondary weight updates with the aim of spreading the recommen-

dation scores across the range [0, 1]. In the first, define the error as the difference

between the score of the top-ranked POI and 1 (e = St(Rt
1)− 1) and use the vector

as the input. In the second, do the same with the bottom-ranked POI, and the

difference between its score and 0. The purpose of this step is to non-aggressively

incentivise the model to produce scores of reasonable and well-differentiated mag-

nitudes, which aids the stability of the learning process.

65

10. Complete steps 5-6 for one scenario in the validation set.

11. Repeat steps 5-10 for all other scenarios in the training and validation sets. Once

the end of either set has been reached, randomly shuffle it and begin again from

the start.

12. Throughout training, maintain a 500-sample moving average of Q as defined in

equation 6.6. Denote this value Q500. Evaluate the change in Q500 every 50 samples.

Stop training if it becomes negative, and revert the model’s weights to their state

as of the previous evaluation.

An important influence on training performance was the learning rate, commonly

denoted η. For the linear model Lin, I found that for the primary weight updates (aimed

at moving p∗ up the ranking), ηprim = 0.0001 yielded fast and stable learning. For the

secondary updates (aimed at spreading the scores across [0, 1]), I used ηsec = 0.000005.

As a more complex models with more parameters, neural networks commonly demand

more aggressive learning rates, and also tend to suffer from a slower start to learning.

For this reason, I used a dynamic learning rate that varied as a function of Q500. Strong

performance was obtained by setting the primary learning rate ηprim to

ηprim = 1.0 + 0.999 · (1− 2(Q500)1/4)) (6.8)

and secondary learning rate ηsec to 0.02× ηprim.

The results of applying this training process to both the linear model Lin and neural

network model NN (with various hidden layer topologies) are presented in the following

chapter. Their post-training performance is compared to the simple summation model

Sum, as well as the single-feature and random baselines introduced in section 6.1.2.

66

Chapter 7

Results and Discussion

This chapter presents the results of applying the city- and POI-level recommender models

to the two recommendation problems with the travel histories dataset. Where I have

presented multiple model types or variants, these are systematically compared in terms

of the performance metrics outlined in the previous chapter. Further analysis seeks

to identify the drivers of strong and weak recommendation performance, and highlight

avenues for further improvement.

7.1 City Recommendation

7.1.1 Single-Tourist Results

When assessing the performance of the three city recommendation models (TT , CC and

TC), an important decision must be made regarding the generation of test cases. The

two options are:

• Randomly sample tourists from the dataset, then select a city to forget for each;

• Randomly sample cities to forget from the list of 200, then select a tourist who has

visited each one to use as the recommendation target.

These approaches produce test sets with markedly different statistics. The former mirrors

the environment of a real-world recommender system, but its set of forgotten cities is

inevitably biased towards major destinations such as London, New York and Paris, simply

because many tourists have been to these places. The latter avoids this issue by sampling

cities with uniform probability. While this approach is more artificial, it more thoroughly

tests the models’ ability to recommend less popular forgotten cities, and is arguably a

more demanding assessment of personalised recommendation quality. I initially explored

both approaches, generating two 5, 000-sample test sets which I denote tourist-first and

city-first respectively.

67

Figure 7.1 contains box plots summarising the distribution of r∗ (position of forgotten

city in ranking) across the test set for all three models1, as well as for the näıve and random

baseline methods described in section 6.1.1, on both test sets. The difference between

the two sampling methods is visually evident: all three models perform better on the

tourist-first test set. The efficacy of the näıve ranking method differs most, varying from

better than both CC and TC with tourist-first sampling to scarcely barely better than

random with city-first sampling. This effectively demonstrates how recommending based

on population-wide statistics can give good performance when the popularity of options

is highly unbalanced, despite being entirely ignorant of individual preferences.

There are valid reasons why I might have chosen either test set for further analysis.

However, the fundamental aim of this project is to build recommender systems capable

of inferring individual preferences and generating personalised recommendations that are

appropriate, regardless how atypical those preferences are. I believe a city-first test set

better captures the spirit of this objective, since it is not biased towards the most common

tourist destinations, and cannot be ‘gamed’ by a non-personalised method such as the

näıve baseline. For this reason, all subsequent analysis in this section uses test sets

generated using city-first sampling.

Focusing now on the box plots for the city-first test set in figure 7.1: while all three

models outperform both baselines in the aggregate, the model based on tourist-tourist

similarity (TT) is markedly stronger. For this model, the r∗ quartiles lie at ranks 2, 8 and

23. Differentiating between the two other models is more difficult: CC has its quartiles

at 24, 61 and 110, compared with 21, 60 and 113 for TC. By one popular informal test:

the notches of the two box plots overlap, so the difference between the medians is not

statistically significant [52].

A more direct comparison to the näıve baseline is shown in figures 7.2 and 7.3. For each

scatter point in the former, the abscissa represents the rank of the forgotten city output by

one of the three recommender models on a particular test case, and the ordinate represents

the rank according to the baseline. Points that lie to the left of the diagonal lines represent

cases where the models outperform the baseline. The latter figure represents the same

data as probability distributions over the difference in r∗ between each model and the

baseline on a case-by-case basis. Here, negative values indicate performance that exceeds

the baseline. The dominance of TT is further evidenced here: out of the 5, 000 test cases,

this model ranks the forgotten city at least as high as the baseline 4386 times (87.7%),

and on average ranks it 69 places higher. Interestingly, figure 7.2 demonstrates that the

model’s performance remains constant all the way down to the least popular of the 200

cities (i.e. those with the lowest baseline ranks). This suggests that the dataset is large

enough to provide informative neighbourhoods even for tourists with relatively unusual

travel histories.

1For the TT model, a neighbourhood size of n = 50 was used.

68

TT model CC model TC model Naïve Random TT model CC model TC model Naïve Random

0

25

50

75

100

125

150

175

200

R
an

k
of

 f
or

go
tt

en
 c

ity
Tourist-first City-first

Figure 7.1: Box plots showing the distribution of r∗ values for the three city recommender
models and two baseline methods across 5, 000 test cases, with both tourist-first and
city-first sampling. In each plot, the horizontal line connecting the notches indicates
the median, the top and bottom of the box indicate the 1st and 3rd quartiles, and the
whiskers indicate the farthest data point within 1.5× the interquartile range from the
median. Crosses represent outliers.

CC outperforms the baseline in 3100 of the test cases (62.0%), with an average ad-

vantage of 24 places, and for TC the values are 3040 (60.8%) and 24 places. These two

models are again almost inseparable in terms of performance. They can both clearly cap-

ture some discernible signal in the data to use for personalised recommendation, but the

results are significantly less impressive than TT . It is a natural next step to investigate

what might be causing the lack of consistency in performance.

Figures 7.4 and 7.5 attempt to uncover possible causal factors in the r∗ values for

the CC and TC models respectively. In figure 7.4, which concerns CC, the bar charts

categorise the 5, 000-sample test set according to the number of labelled visits made

both in the forgotten city, and in the other cities that the target tourist has visited.

The former appears to correlate positively with performance: the more visits have been

made in a forgotten city, the more likely it is to be seen high up the ranking. This

may be because more labelled visits enable better estimation of the city’s POI category

importance vector ic
∗
, thus a greater ability to compute meaningful city-city similarity

values. No such relationship seems to exist with respect to the tourist’s other visited cities,

and if anything there is a slight negative trend. While too much should not be read into

this counter-intuitive result, a possible explanation is that many less commonly-visited

cities are known for just one or two famous POIs (e.g. the cathedral and Roman baths

of Bath), so visitors there are likely to hold a specific interest in those POI categories in

particular.

In figure 7.5, the performance of TC is presented as a function of labelled visits

in the forgotten city, and also of labelled visits made by the target tourist themselves.

69

Figure 7.2: Scatter plots relating r∗ from each model to the value from the näıve baseline
method for 5, 000 test cases (city-first sampling). The diagonal lines indicate thresholds
of equal performance; any point to the left of a line is a case where the model ranks the
forgotten city higher than the baseline.

The former again has a positive correlation, reinforcing the previous point about better

estimation of the ic
∗

vector. The data around the tourist’s visit count is inconclusive for

middling values, but the trend again seems to be positive, and tourists with 50 to 200

labelled visits should expect to see the forgotten city appear around 10 places higher than

those with fewer than 5 visits. None of the charts in figures 7.4 and 7.5 reveal trends

strong enough to be incontrovertible. This in itself suggests that the CC and TC models

are fundamentally weaker across-the-board than the TT model with respect to my chosen

performance metric.

Shifting attention to the high-performing TT model, I investigated the effect of two

factors on recommendation performance: the number of cities that the target tourist has

already visited, and the neighbourhood size parameter n. Figure 7.6 plots the former

against r∗ for the city-first test set, with a trend line fitted using least squares regression.

While it would be ill-advised to draw a definite conclusion from this graph since points

for high city counts are sparse and the general variance is high (R2 = 0.078), it seems

that as the number of cities a tourist has visited increases (especially beyond 10), the

recommendation quality decreases, or at the very least becomes less consistent. This runs

somewhat counter to intuition: one might expect that access to more information about

the subject of a recommender system should improve performance. One plausible cause

of this is that exceptionally well-travelled tourists are less likely to adhere to a consistent

and predictable pattern than their less prolific (more selective) counterparts, perhaps

because their movements are dictated by work or hobbies rather than the destinations

themselves.

Figure 7.7 contains box plots showing the distribution of r∗ for the TT model with

a variety of values for the neighbourhood size n. For each n value, 500 city-first test

70

Figure 7.3: Probability distributions over the difference between r∗ from each model and
the value from the näıve baseline method for 5, 000 test cases (city-first sampling). The
vertical lines indicate thresholds of equal performance; probability mass to the left of a
line corresponds to the model ranking the forgotten city higher than the baseline.

samples were used. The tightening of the box towards the upper end of the ranking as

n is decreased indicates that smaller, more exclusive neighbourhoods generally produce

rankings that place the forgotten city higher (i.e. small neighbourhoods give better-

tailored recommendations). Crucially, however, for n values of 25 and below, cases appear

in which the forgotten city is placed at the bottom of the ranking. This happens because

in any small neighbourhood, there is a non-negligible chance that none of the constituent

tourists have visited a given city and it is given a score of zero2. For n = 25, 12 such

cases occur. For n = 10, this increases to 46 and for n = 5, the number is 93. There is

thus a tradeoff between the specificity of the neighbourhood (small n), which increases

the likelihood of the forgotten city appearing at the very top of the ranking, and its

completeness (large n), which minimises the risk of it not appearing at all. In practical

applications, it would be valid to experiment with small neighbourhoods, which may

in fact lead to the greatest user satisfaction. However, according to the measure of

recommendation performance used in this project – reliably-high ranking of the forgotten

city – a neighbourhood of n = 50 produces the strongest results of the options tried.

7.1.2 Group Results

Having analysed the performance of the city recommender models in the single-tourist

case, I move on to the problem of recommending to multi-tourist groups. In addition to

the three model types, I must evaluate the two aggregation methods (AoS and AoP). As

a further complication, two more factors come into play that could influence performance:

2Several other cities in the set of 200 also do not appear in the visit histories of any neighbour, so in
reality the system orders these randomly at the bottom of the ranking. This means the forgotten city
does not always rank exactly last despite having a score of zero. In figure 7.7 I show only a single marker
at rank 200 because this constitutes the worst-case outcome of the phenomenon of interest.

71

Figure 7.4: Bar charts relating the performance of the CC model to the number of
labelled visits in the forgotten city (left) and in the tourist’s other visited cities (right).
The + bars include cases where the number of visits is greater than the maximum value
in the penultimate bar.

tourist

Figure 7.5: Bar charts relating the performance of the CC model to the number of
labelled visits in the forgotten city (left) and by the tourist themselves (right). The +
bars include cases where the number of visits is greater than the maximum value in the
penultimate bar.

72

0 10 20 30 40 50 60
Number of visited cities

0

20

40

60

80

100

R
an

k
of

 f
or

go
tt

en
 c

ity

Figure 7.6: Scatter plot relating the number of cities already visited by the target tourist
to the r∗ value from the TT model for each of the 5, 000 test cases (city-first sampling).
Trend line fitted using least squares regression.

12 cases46 cases93 cases

Figure 7.7: Box plots showing the distribution of r∗ values for TT city recommender
model with various neighbourhood sizes across 500 test cases (city-first sampling).

73

the choice of aggregation operation (sum or max) for either scores (AoS) or preference

vectors (AoP) and the size g of the tourist group itself (I consider values of g = 2, 3, 5

and 10). This produces a large number of permutations for cross-comparison, 48 in total,

which are summarised in table 7.1.

Table 7.1: Schema of group/model permutations assessed for the group city recommen-
dation problem. There are 16 for each of the three models, giving a total of 48.

Group Size (g)
2 3 5 10

Model

TT

AoS, sum
AoS, max
AoP , sum
AoP , max

CC ...
TC ...

For each value of g, I evaluate using 500-case test sets (city-first sampling). The

complete results are shown as box plots in figures 7.8, 7.9 and 7.10. Results for g =

1 (i.e. the single-tourist case analysed previously) are also included for comparison.

For the TT model, a neighbourhood size of n = 50 is used throughout. Since these

figures summarise the effects of many factors on recommendation performance, there is

no obvious systematic way to discuss them. The following is a bullet-pointed outline of

my key observations:

• Across all three models and aggregation methods, there is a trend towards im-

proved recommendation performance as the group size g increases. The rate of

improvement is more pronounced with the AoS aggregation method (i.e. compute

recommendation scores for each tourist then combine by sum- or max- operation).

• Across all group sizes and aggregation methods, the TT model remains the strongest

by a large margin (note the rescaled vertical axis in figure 7.8). With this model,

there is no clear distinction in performance between AoS and AoP , though for

larger group sizes it appears that both benefit from sum-based aggregation of

scores/preferences. The single best results are attained using sum-based AoS with

g = 10; here the r∗ quartiles are at ranks 1, 1 and 6, which implies that in fully

half of the 500 test cases, the model ranks the group’s forgotten city in first place.

• Despite impressive aggregate statistics, there remain a significant number of outliers

in the results for the TT model. It is likely that these are simply unavoidable on

this dataset: the travel decisions of Flickr users are not fully predictable given only

their history of photographs taken in other cities.

74

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

0 0

10 10

20 20

30 30

40 40

50 50

60 60

70 70

R
an

k
of

 f
or

go
tt

en
 c

ity
g=1 g=2 g=3 g=5 g=10

Figure 7.8: Group recommendation results for the TT model. Vertical axis rescaled to
fit the farthest whiskers to improve readability; some outliers hidden.

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

0 0

25 25

50 50

75 75

100 100

125 125

150 150

175 175

200 200

R
an

k
of

 f
or

go
tt

en
 c

ity

g=1 g=2 g=3 g=5 g=10

Figure 7.9: Group recommendation results for the CC model.

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

A
oS

,
su

m

A
oS

,
m

ax

A
oP

,
su

m

A
oP

,
m

ax

0 0

25 25

50 50

75 75

100 100

125 125

150 150

175 175

200 200

R
an

k
of

 f
or

go
tt

en
 c

ity

g=1 g=2 g=3 g=5 g=10

Figure 7.10: Group recommendation results for the TC model.

75

• The CC model is the weakest of the three across every permutation. It also improves

little as the group size increases (median r∗ between 40 and 49 for g = 10, versus 61

for g = 1), and shows no consistent dependency on the choice of aggregation method

(AoS vs AoP , sum vs max). This implies that recommendation based on similarity

to the POI category distributions of previously-visited cities is a fundamentally

weak method of predicting real-world travel decisions.

• Starting from a point of near-inseparability in the single-tourist case, the TC model

shows a clear advantage over CC as the size of the group increases. This implies

that recommendation based on the POI category preferences of groups of tourists

can be an effective method of predicting real-world travel decisions. With this

model, AoS is significantly better than AoP . The single best results are attained

using max-based AoS with g = 10; here the r∗ quartiles lie at ranks 5, 17 and 42.

7.1.3 Summary of Findings

In domains where the popularity of available options is highly imbalanced, the measured

efficacy of personalised recommendation, compared with that based on population-wide

statistics, depends on the sampling method used to generate the test set. Assuming that

test cases include all cities in the population of 200 with uniform probability, each of my

city recommender models outperforms the näıve and random baselines in terms of its

ability to place the forgotten city high on the ranking. TT , the model based on tourist-

tourist similarity (i.e. collaborative filtering), is the strongest of the three by a wide

margin, ranking the forgotten city at a median position of 8 in the single-tourist case if a

neighbourhood of 50 tourists is used. Larger neighbourhoods reduce the recommendation

relevance, while smaller ones carry a risk that the forgotten city does not appear at all

in the set of histories. An interesting but tentative result is that the TT model is most

reliable when target tourists have visited relatively few cities in the past, which may

be because prolific tourists are less consistent in the kinds of city they choose to visit.

An investigation of the weaker performance of the CC and TC models has revealed few

strong results, although it is clear that more visits to the forgotten city afford a more

accurate estimation of its POI category importance vector, and in turn a higher ranking.

To varying degrees, all three models improve in performance when the recommenda-

tion target is a group rather than a single tourist. TT retains its dominance, and with

the strongest combination of aggregation methods, places the forgotten city at the very

top of the ranking around half the time when the group size is 10. For larger group sizes,

a gap also opens up between the performance of CC and TC, with the latter ranking

the forgotten city around 20 places higher on average for groups of 5 or 10 tourists, most

notably when the AoS aggregation method is used. With the other two models, the

choice of aggregation method has no consistent effect.

76

Table 7.2: Weights learned by the linear model Lin, and asymptotic validation set per-
formance, from three runs with each of two settings for the learning parameter ω.

ω
Learned weight for feature

Asymptotic Q500 value on validation set
fPop fCat fProx fTime fDate fHist

1
1.07 0.189 1.07 1.00 0.743 1.00 0.849
1.07 0.0558 1.082 0.996 0.683 1.10 0.848
1.07 0.0593 1.07 0.988 0.707 1.00 0.849

rand
0.964 -0.0215 0.927 0.875 0.530 0.897 0.848
0.946 -0.0103 0.912 0.879 0.463 0.841 0.852
0.876 -0.0323 0.838 0.810 0.419 0.831 0.854

7.2 POI Recommendation

7.2.1 Optimisation Process

Applying the criteria given in section 6.1.2 to the travel histories dataset, and discarding

all but the last qualifying scenario for each (tourist city) pair, yielded 15, 326 valid sce-

narios for the POI recommendation problem. I partitioned these randomly into training,

validation and test sets with a 60:20:20 split. Before training the machine learning mod-

els for mapping features into scores, I set the hyperparameters for the feature creation

process to the same values as given in section 5.2.53:

α = 100 β = 2000 γ = 100 ζ = 0.1 κ = 24

I trained the linear model Lin according to the method described in section 6.2 with

two alternative settings for ω. With the first, I set ω = 1, which meant the target of

training was to swap p∗ with the POI immediately above it in the ranking. With the

second (denoted ω = rand), I sampled ω uniformly from {1 .. r∗ − 1}. Randomised

ordering of the training set meant that both settings for ω would yield slightly different

weights each time training was completed. To test this, I trained the model three times

for each setting, giving the weights shown in table 7.2. Also shown is the asymptotic

value of Q500 for the validation set; recall that this is defined as the 500-sample moving

average of 1 − (r∗/Rc|). While there is only a small difference in Q500 value, ω = rand

appears to produce marginally better learning on average. When referring to the Lin

model throughout the rest of this chapter, I use the weight values learned in the third

training run for ω = rand (i.e. the bottom row of table 7.2).

Training of the neural network model NN was more complex since, in addition to the

value of ω, the hidden layer topology had an effect on performance. I considered networks

with the following topologies:

3A sensitivity analysis indicated that the exact values of these hyperparameters makes little difference
to recommendation performance with this dataset.

77

va
lid

at
io

n

Figure 7.11: Learning curves for neural network model with a single 3-neuron hidden
layer, using ω = 1 or ω = rand for the training method. Each training run was halted
when a reduction in Q500 was observed on the validation set.

• One hidden layer 3 or 6 neurons;

• Two hidden layers with 3 or 6 neurons each;

• Three hidden layers with 3 or 6 neurons each.

Starting with the smallest network (one hidden layer, 3 neurons), I again completed

three training runs each for ω = 1 and ω = rand. The learning curves are shown in figure

7.11. It is clear from this visualisation that ω = rand produces markedly faster and more

consistent learning than ω = 1; in all three training runs with the former, the validation

set Q500 rises permanently above 0.8 within 5, 000 training scenarios, whereas for two of

the runs with the latter, more than 10, 000 are required. The mean asymptotic value of

Q500 is also marginally higher with ω = rand: 0.853 instead of 0.850.

Given that larger neural networks tend to require longer training times, I trained

all other topologies using ω = rand. Their learning curves are shown in figure 7.12,

which demonstrates two clear results. Firstly, the larger networks do indeed take longer

to reach convergence. Secondly, asymptotic performance (as measured by Q500) sees no

measurable improvement as the network size is increased, remaining around 0.85 for all

topologies. A lack of an upwards trend in performance as model complexity is increased is

commonly attributed to over-fitting to the training set. However, figure 7.13 demonstrates

that this is not the case in this context. In a surrounding set of experiments, I found

that alternative learning rate schedules and topologies also have a negligible effect on

asymptotic performance. This suggests that a simple model, even a linear one, is sufficient

to come close to maximum recommendation performance on this particular dataset, given

my choice of features. This possibility is discussed in greater depth later in this section.

From the set of all training runs for the various network topologies, I selected the two

that boast the highest asymptotic validation set Q500 values to carry forward to a full

78

va
lid

at
io

n

NN3

NN6,6

Figure 7.12: Learning curves using ω = rand for neural network model with a variety
of hidden layer topologies as indicated by the sub-figure titles (e.g. [3, 3] = two hidden
layers, 3 neurons each). Curves for the smallest network [3] copied from figure 7.11 for
reference.

Validation NN3 NN6,6

Figure 7.13: Asymptotic Q500 values on both the training and validation sets for each
training run from figure 7.12. In the majority of cases (13 out of 18), validation set
performance is higher than training set performance, a trend which remains unchanged
even as the model complexity is increased. This shows that the lack of performance
improvement cannot be attributed to overfitting to the training set.

79

Sum Lin NN3 NN6, 6 fPop fCat fProx fTime fDate fHist Random

0.0

0.2

0.4

0.6

0.8

1.0

Q
 o

n
te

st
 s

et
Scoring Methods Baselines

Figure 7.14: Box plots showing the distribution of Q values for the four POI scoring
methods and seven baselines across 3, 055 test scenarios.

performance evaluation on the test set. These are the two models indicated by arrows

in figures 7.12 and 7.13: one using the smallest topology with a single 3-neuron hidden

layer (henceforth denoted NN3) and the other using two 6-neuron hidden layers (denoted

NN6,6).

7.2.2 Performance Comparison

Having trained the scoring methods Lin and NN (specifically my chosen variants NN3

and NN6,6), a performance comparison can now be conducted between these options,

as well as the simple feature-summing method Sum and the single-feature and random

baselines. For this I use the test set, which consists of 3, 055 unseen POI recommendation

scenarios. In each scenario, I quantify performance via Q.

Figure 7.14 contains box plots summarising the distribution of Q values across the

test set for each scoring method, as well as for the seven baselines. It is immediately clear

both that all four scoring methods outperform the single-feature baselines, and in turn

the baselines are each significantly more informative than random (with fProx, fPop and

fHist being the three most effective). Secondarily, in this presentation, there appears to be

only a small difference in performance between Sum, Lin and both NN topologies, which

is remarkable in itself: simply summing up the values of the six features is enough to

yield comparable recommendation performance to a relatively complex machine learning

model trained on tens of thousands of real-world travel histories.

The summary statistics in table 7.3 do show that all three quartiles of Q, as well as the

mean value4, increase consistently with model complexity, though differences are on the

4It is also worth here noting that the mean Q values very close to the asymptotic Q500 values attained
during training. This shows that the training, validation and test sets all come from the same statistical
distribution as desired.

80

Table 7.3: Summary statistics of the distribution of Q values for the four scoring methods.

Scoring Method
Quartiles of Q

Mean of Q Modal r∗
1 2 3

Sum 0.779 0.923 0.982 0.848 1 (13.6%)

Lin 0.797 0.931 0.988 0.857 1 (18.5%)

NN3 0.799 0.935 0.990 0.858 1 (19.0%)

NN6,6 0.805 0.938 0.992 0.860 1 (19.8%)

order of just 1-2%. A more pronounced difference is visible when considering the modal

value of r∗. All four methods have a mode of 1 (i.e. the single most common rank for

the forgotten POI is first), but the percentage of scenarios in which this occurs increases

from around 14% for Sum to 20% for NN6,6. This is a promising result, implying that

in approximately 1 in 5 cases, the strongest variant of my recommender system can

successfully identify the exact place that a tourist will visit next from a set of candidate

POIs across an entire city.

Another means of comparison is to look at the proportion of individual scenarios in

which each scoring method yields the highest Q. One complexity of this approach is that

in many cases, two methods jointly share first place. This is demonstrated in the left sub-

table of table 7.4, which categorises each scenario s in the test set S (|S| = 3055) according

to the set of methods that perform best. I denote this set Bs. A single performance score

perf(method) can be computed for method ∈ {Sum,Lin,NN3, NN6,6} using an equation

inspired by the definition of a pignistic probability distribution in Dempster-Shafer theory

[53]:

perf(method) =
1

|S|
∑
s∈S

{
1
|Bs| if method ∈ Bs

0 otherwise
(7.1)

The right sub-table of table 7.4 shows this calculation for each method. The resulting

values, which sum to 1, can be interpreted as the probability that each scoring method

is the strongest. While no method dominates, the larger neural network model NN6,6

is clearly separated from the other three, with a probability over twice that of Sum. A

reasonable conclusion of this performance comparison is therefore that POI recommen-

dation performance can be improved by a more complex scoring method, but not by a

very large amount.

7.2.3 Correlation Analysis

The correlogram in figure 7.15 visualises the Pearson correlation coefficients between the

r∗ values produced by the four scoring methods, and by the six single-feature baselines,

on the test set. It is best described as comprising three distinct regions, separated by

81

Table 7.4: Categorisation of the 3, 055 test scenarios according to the set of scoring
methods with highest Q [left], and application of these values to compute the pignistic
probability that each method produces the strongest overall recommendation [right].

Bs # Pignistic Probability
{Sum} 316

Sum 1
3055

(
316
1 + 46+92+31

2 + 82+41+19
3 + 366

4

)
= 0.177{Lin} 277

{NN3} 370
Lin 1

3055

(
277
1 + 46+94+154

2 + 82+41+185
3 + 366

4

)
= 0.202{NN6,6} 847

{Sum,Lin} 46
NN3

1
3055

(
370
1 + 92+94+135

2 + 82+19+185
3 + 366

4

)
= 0.235{Sum,NN3} 92

{Sum,NN6,6} 31
NN6,6

1
3055

(
847
1 + 31+154+135

2 + 41+19+185
3 + 366

4

)
= 0.386{Lin,NN3} 94

{Lin,NN6,6} 154
{NN3, NN6,6} 135
{Sum,Lin,NN3} 82
{Sum,Lin,NN6,6} 41
{Sum,NN3, NN6,6} 19
{Lin,NN3, NN6,6} 185

All 366

dotted lines in the figure and denoted A, B and C.

Region A shows the correlations in r∗ between the four scoring methods, which are

all high, lying between 0.882 (Lin and NN6,6) and 0.958 (Lin and NN3). This indicates

that, as expected, the methods generally perform well in similar sets of scenarios, so are

not using the underlying features in radically different ways. It also suggests that any

instances of poor performance are not due to particular failings of each learned model,

but rather due to certain POI visits being inherently unpredictable given the available

features. However, the correlation values concerning NN6,6, the larger neural network, are

consistently somewhat lower than the others, which points to this model having learned

to prioritise the features slightly differently.

Region B shows the r∗ correlations between the scoring methods and each of the single-

feature baselines, which can be interpreted as indicating how strongly each feature is taken

into account by each method. As should be expected, the uniform-weighting model Sum

shows the least polarisation between features, although correlates unusually heavily with

fProx. This indicates that this feature exhibits greater variability than the other five,

highlighting a potential drawback of the simple z-normalisation method. Normalising by

standard deviation is most meaningful for symmetric distributions, whereas in cities with

clustered POIs, the distribution of fProx will have a highly asymmetric exponential-like

form. For the other scoring methods, there is an apparent trend of increasing polarisation

towards fProx, fPop and fHist (in order of weighting) as the model complexity is increased.

Referring back to figure 7.14, it can be seen that this corresponds exactly with the

predictive efficacy of these features. The learning models have therefore successfully

82

C

B

A

Figure 7.15: Correlogram visualising the Pearson correlation in r∗ values for all POI
scoring methods and single-feature baselines on the test set.

identified which features are more useful than others. The polarisation effect is most

pronounced with NN6,6, which may help to explain the slight departure of this method

from the others, as discussed above.

Finally, region C concerns the r∗ correlations between the features themselves. The

high prevalence of near-white cells in this region indicates that for the most part, the

features are statistically independent. This is a desirable property: independent features

are less redundant and contain more information than highly-correlated ones. There are,

however, two notable exceptions. Firstly, fProx and fHist are positively correlated (value

= 0.398), which suggests that ranking candidate POIs by proximity to the current loca-

tion has a somewhat similar effect to ranking by the historical time-weighted coincidence

rate with previously-visited POIs. This in turn suggests that the informativeness of fHist

could be improved if it were normalised by proximity5. Secondly, and more subtly, the

performance of fPop correlates negatively with each of the three features which involve

normalising by popularity. This may be an instance of the subtle explaining away phe-

nomenon: a high value of fTime, fDate or fHist is sufficient to explain a tourist’s visit to

a POI, so the likelihood that the POI is also globally popular is reduced [54].

7.2.4 Performance Patterns

As suggested in the previous subsection, it appears that certain POI visits in the dataset

are inherently more predictable than others. My final category of analysis seeks to identify

any patterns in recommendation performance as a function of aspects of the scenario. In

figure 7.16, the mean Q value for each scoring model is separated by city. To ensure

reasonable sample sizes, only those cities with at least 20 scenarios in the test set are

5It would also be worth experimenting with different values for the time-discounting parameters ζ
and κ, to reduce the bias towards POI pairs that are visited very close in time.

83

N
ew

 Y
or

k

Lo
nd

on

Pa
ri
s

S
an

 F
ra

nc
is

co

W
as

hi
ng

to
n

B
er

lin

S
ea

tt
le

C
hi

ca
go

R
om

e

Lo
s

A
ng

el
es

B
ar

ce
lo

na

M
ad

ri
d

S
yd

ne
y

To
ro

nt
o

V
an

co
uv

er

S
an

 D
ie

go

La
s

V
eg

as

Ed
in

bu
rg

h

B
ay

 L
ak

e

B
os

to
n

M
el

bo
ur

ne

V
en

ic
e

V
ie

nn
a

S
in

ga
po

re

Ph
ila

de
lp

hi
a

A
m

st
er

da
m

M
on

tr
ea

l

Li
sb

on

N
ew

 O
rl
ea

ns

B
ru

ss
el

s

D
ub

lin

Fl
or

en
ce

S
to

ck
ho

lm

Pr
ag

ue

M
un

ic
h

O
xf

or
d

C
op

en
ha

ge
n

Is
ta

nb
ul

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
M

ea
n

Q
 o

n
te

st
 s

et
Sum
Lin
NN3
NN6, 6

Figure 7.16: Mean Q value for each scoring model, separated by city.

shown. The cities are ordered left-to-right according to the number of labelled visits in the

dataset at large (see figure 4.2). There is a generally negative trend in recommendation

performance as the global popularity of the target city is decreased, which is common

across all scoring methods. In particular, the two cities in which the mean Q is highest

– London and New York – are also the ones with the most recorded visits. This suggests

that, all else being equal, obtaining more data about tourists’ histories in a city improves

recommendation performance. Another possible trend is that performance is better in

English-speaking cities: all of the cities in which at least one model attains a mean of

Q = 0.9 or above are wholly or partly Anglophone. This may be attributable to the

dataset itself. OpenStreetMap provides the majority of its POI metadata in English, so

POI labelling is likely to have been somewhat more reliable in these locations.

Figure 7.17 similarly separates out performance on the test set according to the cate-

gory of the forgotten POI. Again, only categories with at least 20 scenarios are included,

and the left-to-right ordering corresponds with overall popularity across the dataset. In

this case, there is no visible trend with popularity, but there significant variability be-

tween individual categories. A tentative observation is that the categories for which

performance is highest (memorial, garden, monument, town hall) are all static features

with predictable flows of tourists, while the ones that are least well predicted are highly

dependent on specific events such as plays, sports games and lectures (theatre, stadium,

university), or alternatively on weather conditions (beach). A more sophisticated recom-

mender system could incorporate weather forecast information and event times to yield

more appropriate recommendations with respect to these categories.

84

A
tt

ra
ct

io
n

Pa
rk

M
us

eu
m

Pl
ac

e
of

 W
or

sh
ip

A
rt

w
or

k

Th
ea

tr
e

S
ta

di
um

M
em

or
ia

l

U
ni

ve
rs

ity

G
ar

de
n

V
ie

w
po

in
t

M
on

um
en

t

Fo
un

ta
in

M
ar

ke
tp

la
ce

A
rt

s
C
en

tr
e

C
in

em
a

To
w

nh
al

l

B
ui

ld
in

g

Th
em

e
Pa

rk

To
ur

is
m

Z
oo

B
ea

ch

H
is

to
ri
c

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
M

ea
n

Q
 o

n
te

st
 s

et
Sum
Lin
NN3
NN6, 6

Figure 7.17: Mean Q value for each scoring model, separated by forgotten POI category.

7.2.5 Summary of Findings

Using the learning approach outlined in section 6.2, a neural network with two 6-neuron

hidden layers can be trained to output POI recommendation scores that place the for-

gotten POI p∗ at a median position of 6% down the ranking of candidate all POIs. This

is markedly better than all single-feature baselines, which rank POIs näıvely based on

metrics such as overall popularity and proximity to the target tourist’s current location.

However, it is also remarkable that far smaller networks or linear models optimised via the

same learning approach, and even a straight summation of the (z-normalised) features,

perform just 1-2% worse in terms of average rank percentage. Reframing the compari-

son as a tallying of the single highest-ranking method on a per-scenario basis reveals a

greater advantage for the larger neural network, but not not enough for it superiority to

be incontrovertible. This suggests that the choice and engineering of the input features

themselves, rather than the exact method of their combination, is the source of most

of the recommendation performance. In some real-world contexts it may be desirable

to sacrifice some of the additional performance of of the more complex model to afford

greater interpretability.

Correlation analysis of the four scoring methods shows a high degree of similarity in

their ranking of p∗ across the set of scenarios; if one method performs well on a given

scenario, the others are likely to do the same. Further correlation of each method with

respect to each individual feature shows that the learning models place greater weight

on the fProx, fPop and fHist features than the other three. This result, combined with

the greater predictive efficacy of the baseline rankings generated by these features, makes

for compelling evidence that they are more valuable metrics for the POI recommenda-

tion problem. A final set of feature-to-feature correlations shows that they are largely

85

independent, with little redundancy. The instances where this is not the case could be

addressed by small changes to the feature engineering process.

Recommendation performance varies as a function of the city in which the recommen-

dation is made. Visits in more popular cities are generally easier to predict, likely due to

better data availability. All exceptions to the trend are Anglophone cities, suggesting that

the underlying dataset is higher quality in these locations. Performance is also dependent

on the category of p∗. Categories containing static POIs such as monuments and town

halls are more readily predicted than those whose appropriateness is highly sensitive to

weather conditions or events schedules.

86

Chapter 8

Conclusion

8.1 Summary of Outcomes

In this project I have developed a variety of models and techniques for the data-driven

recommendation of touristic experiences. The first problem I have addressed is that of

ranking candidate cities to visit for a group of travellers, based on their previous travel

histories and preferences over experience types as summarised by their POI category

preference distributions. I proposed three alternative recommendation models based on

collaborative filtering (TT), content-based relation of candidate cities to those already

visited (CC) and matching of cities to tourist’s preference distributions (TC). I also

considered two aggregation methods based on either scores (AoS) or preferences (AoP).

The second problem addressed is that of ranking POIs to visit at a designated time

during an ongoing city holiday; for this problem I considered only a single target tourist.

I developed six numerical features to quantify the suitability of candidate POIs based on

overall popularity, the target tourist’s known preferences, contextual factors (location,

time and date) and historic correlations with previously-visited POIs. I also proposed

three methods for mapping features into recommendation scores: a simple summation

Sum, a linear regression model Lin and a feedforward neural network NN .

Implementation of the recommender systems required a dataset of travel histories,

and for this I followed numerous previous works in harnessing the Flickr YFCC100M

dataset of location- and time-tagged photos. I developed a novel pipeline for converting

this raw data source into the desired form, consisting of: identifying photos taken within

each of the top 200 most popular cities worldwide; clustering each user’s photos into

visits based on spatiotemporal proximity; assembling a set of words for each visit from

the associated photo metadata; comparing these words to descriptions of nearby POIs

on OpenStreetMap; and assigning a POI to a visit if the match was sufficiently strong.

The single greatest departure from the dataset creation methods in existing works was

the inclusion of a secondary bootstrapping sweep, which sought to label more visits by

87

relating their word sets to distributions of word popularities across already-labelled visits.

This process brought the total number of labelled visits to around 1.3 million across the

200 cities, concerning 64, 000 individual tourists.

Recommender systems are notoriously challenging to evaluate in offline environments,

especially for tourism where feedback on recommendation quality is sparse and delayed.

I took a cue from previous work in evaluating my models via cross-validation with the

dataset itself, effectively reformulating the recommendation problem as that of predicting

the travel decisions of real tourists. Performance was quantified in terms of the recom-

mendation rank of a single ‘forgotten’ city or POI amongst the set of candidates. I

compared model performance to numerous more näıve baseline ranking techniques, some

of which have also been used in existing work. On the city recommendation problem,

the TT model significantly outperformed the other two, ranking the forgotten city at a

median position of 8 out of 200 in the single-tourist case with a neighbourhood of 50

tourists. For all three models, performance improved when the recommendation target

was a group rather than a single tourist. TT remained the strongest, placing the forgot-

ten city first in the ranking around half the time for groups of 10 tourists. The CC model

also began to outperform TC with groups, ranking the forgotten city around 20 places

higher on average for groups of 5 or 10 tourists, most notably when the AoS aggregation

method was used. Otherwise, the choice of aggregation method had little effect.

For the POI recommendation problem, two of the features-to-score mapping tech-

niques were machine learning models that required training before use. For this I devel-

oped a developed a learning-to-rank algorithm that performed two kinds of weight update:

one to move the forgotten POI higher in the ranking by swapping it with a higher-ranked

POI, and another to spread the set of recommendation scores across the range [0, 1] to

aid learning stability and speed. This algorithm proved effective for training both the

Lin model and various NN topologies. However, all models consistently converged to

essentially the same performance level on the validation set. This lack of an increase in

performance with model complexity could not be attributed to overfitting, and instead

suggested that a linear model is sufficient to attain near-optimal performance on the

problem as defined, given the set of six features. That said, when evaluating the various

methods on a held-out test set, the larger of two NN topologies (two 6-neuron hidden

layers) was shown to be the strongest, placing the forgotten POI at a median position

of 6% down the ranking of candidate POIs. The other models performed around 1-2%

worse in terms of average rank percentage, and all outperformed the baselines by a wide

margin. Reframing the comparison as a tallying of the single highest-ranking method

on a per-scenario basis suggested a greater advantage for the larger neural network. In

surrounding analyses, I found that visits in popular and Anglophone cities were predicted

best, likely due to better data quality in these locations. Static POI categories were also

better predicted than those that are weather- or event-sensitive.

88

8.2 Summary of Contributions

I summarise the key contributions of this project as follows:

• Concept: A design for recommendation tools that uses the same underlying social

dataset, and several of the same derived features, to perform both city- and POI-

level recommendation. In both cases, the output is a full ranking of candidate

options, rather than a single suggestion or shortlist, which maximises the scope for

subsequent applications.

• Dataset: A novel dataset of real-world travel histories derived from the Flickr

YFCC100M archive in combination with OpenStreetMap. The dataset is larger in

absolute terms than any similarly-derived set that could be found in the existing

literature, covers 200 cities worldwide instead of the 4-10 typically seen, and is

markedly higher in accuracy than the single most comparable extant dataset.

• Models: For the city recommendation problem, a collaborative filtering approach

that uses per-city photo counts as an implicit rating device, and a content-based

approach that characterises a city by its distribution of visits to various POI cate-

gories. For the POI recommendation problem, a selection of preference-, time- and

history-sensitive features for quantifying contextual POI suitability, which comple-

ment the commonly-used measures of overall popularity and proximity.

• Algorithms: A process for reliably deriving POI visitation from photo metadata,

including a novel bootstrapping stage that uses the population-wide distribution of

words in user-provided text to infer the most likely POI to assign to a set of photos.

Elsewhere, a stable learning-to-rank algorithm that works to move a single target

item in each training example to the top of the ranking.

• Results: At a high level, a consistent outperforming of baseline methods across

both problems. Strong evidence that, with the given problem formulation, con-

ventional collaborative filtering over previous travel histories outperforms content-

based recommendation at predicting the chosen city destination of a single tourist,

and that performance further increases when recommending to groups. For the

POI recommendation problem, the indication that a linear model attains close to

the maximum possible prediction performance, though can be beaten by a neural

network with two 6-neuron hidden layers.

8.3 Areas for Improvement and Future Work

The following are some limitations of the approach taken in this project, and avenues for

future work that could improve or extend the outcomes:

89

• Improved Dataset Creation: This project left unexplored many additional

methods for processing Flickr and OpenStreetMap data into travel histories. Topic

modelling techniques, such as latent Dirichlet allocation, could be used to more

robustly identify the most likely POI for a visit and gracefully handle uncertainty.

A different direction would be to utilise the image content itself, visually matching

uploaded photos to known template images or Google Sreet View data to determine

exact locations. The two approaches need not be mutually exclusive.

• Hybridisation of City Recommendation: While the collaborative filtering

model TT has been found to outperform the alternative models CC and TC on the

city recommendation problem, the latter two are still significantly better than ran-

dom. This begs the question as to whether further performance improvement could

be attained by combining the three approaches into a single model. This could take

a form similar to the feature-to-score mapping used by the POI recommender.

• Refined POI Features: In this project, the effect of the feature hyperparameters

for POI recommendation was not systematically studied, and optimisation of these

values could improve performance. Additionally, fHist may benefit from being

normalised by proximity, and a better expression of user preference than fCat could

be sought, since this feature does not appear to carry much predictive power.

• Extended Functionality: A natural extension of the POI recommender system

would be to adapt it to work with tourist groups. In addition, the models could be

adapted to output sequences of POIs (i.e. solve the orienteering problem) rather

than focus exclusively on the single next visit. The simplest method of doing this

would be to run the model iteratively, estimating the length of each visit using

historic trends. Finally, additional data sources could be harnessed to enable the

consideration of travel durations, opening times and weather conditions.

• User Testing: The assessment of predictive performance on a dataset of real travel

histories is a reasonable and popular approach for tourism recommendation, but is

an incomplete substitute for a real user study. User testing would be a crucial next

step in the development of the project, with performance measured by eliciting

feedback on perceived recommendation quality from the study participants.

• Deployment: Ultimately, the study of recommender systems should be oriented

towards real-world deployment. Once sufficiently tested and refined, the city- and

POI-level recommender systems could be deployed as an integrated web or mobile

application for use by real tourists. The deployed system could operate using a

user’s own data from Flickr or another social media service. Alternatively, the

generic models presented in chapter 3 could be adapted to work with another source

of histories, such as the location-tracking functionality of modern smartphones.

90

Bibliography

[1] World Tourism Organization (UNWTO). UNWTO Tourism Highlights: 2018 Edi-

tion. Aug 2018.

[2] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. Rec-

ommender systems: an introduction. Cambridge University Press, 2010.

[3] Alexander Felfernig, Ludovico Boratto, Martin Stettinger, and Marko Tkalčič. Group

recommender systems: An introduction. Springer, 2018.

[4] Spotify Technology S.A. Spotify.

[5] Netflix Inc. Netflix.

[6] Amazon.com Inc. Amazon.

[7] Facebook Inc. Facebook.

[8] Match Group Inc. Match.com.

[9] Douglas W Oard, Jinmook Kim, et al. Implicit feedback for recommender systems.

In Proceedings of the AAAI workshop on recommender systems, volume 83. WoUon-

gong, 1998.

[10] Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. Facing the

cold start problem in recommender systems. Expert Systems with Applications,

41(4):2065–2073, 2014.

[11] Michael J Pazzani and Daniel Billsus. Content-based recommendation systems. In

The adaptive web, pages 325–341. Springer, 2007.

[12] Alexander Felfernig and Robin Burke. Constraint-based recommender systems: tech-

nologies and research issues. In Proceedings of the 10th international conference on

Electronic commerce, page 3. ACM, 2008.

[13] Li Chen and Pearl Pu. Evaluating critiquing-based recommender agents. In AAAI,

pages 157–162, 2006.

91

[14] Li Chen and Pearl Pu. Critiquing-based recommenders: survey and emerging trends.

User Modeling and User-Adapted Interaction, 22(1-2):125–150, 2012.

[15] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recommender sys-

tems. In Recommender systems handbook, pages 217–253. Springer, 2011.

[16] Virginia Tsintzou, Evaggelia Pitoura, and Panayiotis Tsaparas. Bias disparity in

recommendation systems. CoRR, abs/1811.01461, 2018.

[17] Robin Burke. Hybrid recommender systems: Survey and experiments. User modeling

and user-adapted interaction, 12(4):331–370, 2002.

[18] Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms,

business value, and innovation. ACM Transactions on Management Information

Systems (TMIS), 6(4):13, 2016.

[19] Sriharsha Dara, C. Ravindranath Chowdary, and Chintoo Kumar. A survey on group

recommender systems. Journal of Intelligent Information Systems, Jan 2019.

[20] Francesco Ricci. Travel recommender systems. IEEE Intelligent Systems, 17(6):55–

57, 2002.

[21] JA Delgado and Richard Davidson. Knowledge bases and user profiling in travel and

hospitality recommender systems. Citeseer, 2002.

[22] Joan Borràs, Antonio Moreno, and Aida Valls. Intelligent tourism recommender

systems: A survey. Expert Systems with Applications, 41(16):7370–7389, 2014.

[23] Montserrat Batet, Antonio Moreno, David Sánchez, David Isern, and Aı̈da Valls.

Turist@: Agent-based personalised recommendation of tourist activities. Expert

Systems with Applications, 39(8):7319–7329, 2012.

[24] Luis Castillo, Eva Armengol, Eva Onaind́ıa, Laura Sebastiá, Jesús González-

Boticario, Antonio Rodŕıguez, Susana Fernández, Juan D Arias, and Daniel Borrajo.

samap: An user-oriented adaptive system for planning tourist visits. Expert Systems

with Applications, 34(2):1318–1332, 2008.

[25] R Logesh, V Subramaniyaswamy, V Vijayakumar, and Xiong Li. Efficient user

profiling based intelligent travel recommender system for individual and group of

users. Mobile Networks and Applications, pages 1–16, 2018.

[26] Kenneth Wai-Ting Leung, Dik Lun Lee, and Wang-Chien Lee. Clr: a collaborative

location recommendation framework based on co-clustering. In Proceedings of the

34th international ACM SIGIR conference on Research and development in Infor-

mation Retrieval, pages 305–314. ACM, 2011.

92

[27] Yue Shi, Pavel Serdyukov, Alan Hanjalic, and Martha Larson. Personalized landmark

recommendation based on geotags from photo sharing sites. In Fifth International

AAAI Conference on Weblogs and Social Media, 2011.

[28] Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thalmann.

Time-aware point-of-interest recommendation. In Proceedings of the 36th interna-

tional ACM SIGIR conference on Research and development in information retrieval,

pages 363–372. ACM, 2013.

[29] Ranieri Baraglia, Cristina Ioana Muntean, Franco Maria Nardini, and Fabrizio Sil-

vestri. Learnext: learning to predict tourists movements. In Proceedings of the 22nd

ACM international conference on Information & Knowledge Management, pages

751–756. ACM, 2013.

[30] T Yamasaki, A Gallagher, and T Chen. Personalized intra-and inter-city travel rec-

ommendation using large-scale geo-tagged photos. In 2nd ACM Multimedia Work-

shop on Geotagging and Its Applications in Multimedia, 2013.

[31] Kwan Hui Lim, Jeffrey Chan, Shanika Karunasekera, and Christopher Leckie. Per-

sonalized itinerary recommendation with queuing time awareness. In Proceedings

of the 40th International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 325–334. ACM, 2017.

[32] Liangliang Cao, Jiebo Luo, Andrew Gallagher, Xin Jin, Jiawei Han, and Thomas S

Huang. Aworldwide tourism recommendation system based on geotaggedweb photos.

In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing,

pages 2274–2277. IEEE, 2010.

[33] Martin Goossen, Henk Meeuwsen, Jappe Franke, and Marjolijn Kuyper. My ideal

tourism destination: Personalized destination recommendation system combining

individual preferences and gis data. Information Technology & Tourism, 11(1):17–

30, 2009.

[34] Ulrike Gretzel, Nicole Mitsche, Yeong-Hyeon Hwang, and Daniel R Fesenmaier. Tell

me who you are and i will tell you where to go: Use of travel personalities in des-

tination recommendation systems. Information Technology & Tourism, 7(1):3–12,

2004.

[35] Liliana Ardissono, Anna Goy, Giovanna Petrone, Marino Segnan, and Pietro Torasso.

Intrigue: personalized recommendation of tourist attractions for desktop and hand

held devices. Applied artificial intelligence, 17(8-9):687–714, 2003.

93

[36] Anthony Jameson. More than the sum of its members: challenges for group rec-

ommender systems. In Proceedings of the working conference on Advanced visual

interfaces, pages 48–54. ACM, 2004.

[37] Amra Delic, Julia Neidhardt, Thuy Ngoc Nguyen, and Francesco Ricci. An observa-

tional user study for group recommender systems in the tourism domain. Information

Technology & Tourism, 19(1-4):87–116, 2018.

[38] Kevin McCarthy, Lorraine McGinty, Barry Smyth, and Maria Salamó. The needs

of the many: a case-based group recommender system. In European Conference on

Case-Based Reasoning, pages 196–210. Springer, 2006.

[39] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Dou-

glas Poland, Damian Borth, and Li-Jia Li. YFCC100M: The new data in multimedia

research. arXiv preprint arXiv:1503.01817, 2015.

[40] Lin Wan, Yuming Hong, Zhou Huang, Xia Peng, and Ran Li. A hybrid ensemble

learning method for tourist route recommendations based on geo-tagged social net-

works. International Journal of Geographical Information Science, 32(11):2225–2246,

2018.

[41] Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, and Shanika Karunasekera. Per-

sonalized tour recommendation based on user interests and points of interest visit

durations. In Proceedings of the 24th International Joint Conference on Artificial

Intelligence (IJCAI’15), pages 1778–1784, 2015.

[42] Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, and Shanika Karunasekera. To-

wards next generation touring: Personalized group tours. In Twenty-Sixth Interna-

tional Conference on Automated Planning and Scheduling, 2016.

[43] Michalis Korakakis, Evaggelos Spyrou, Phivos Mylonas, and Stavros J Perantonis.

Exploiting social media information toward a context-aware recommendation system.

Social Network Analysis and Mining, 7(1):42, 2017.

[44] Shuhui Jiang, Xueming Qian, Jialie Shen, and Tao Mei. Travel recommendation

via author topic model based collaborative filtering. In International Conference on

Multimedia Modeling, pages 392–402. Springer, 2015.

[45] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. A

theoretical analysis of ndcg ranking measures. In Proceedings of the 26th annual

conference on learning theory (COLT 2013), volume 8, page 6, 2013.

[46] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between

probability density functions. City, 1(2):1, 2007.

94

[47] Dominik Maria Endres and Johannes E Schindelin. A new metric for probability

distributions. IEEE Transactions on Information theory, 2003.

[48] OpenStreetMap contributors. OpenStreetMap: the free wiki world map. https:

//www.openstreetmap.org, 2019.

[49] Wes McKinney et al. Data structures for statistical computing in python. In Pro-

ceedings of the 9th Python in Science Conference, volume 445, pages 51–56. Austin,

TX, 2010.

[50] OpenStreetMap Wiki. Overpass api — openstreetmap wiki, 2019. [Online; accessed

3 June 2019].

[51] TripAdvisor.com. Top attractions, 2019. [Online; accessed 10 August 2019].

[52] Robert McGill, John W Tukey, and Wayne A Larsen. Variations of box plots. The

American Statistician, 32(1):12–16, 1978.

[53] Philippe Smets and Robert Kennes. The transferable belief model. Artificial intel-

ligence, 66(2):191–234, 1994.

[54] Judea Pearl. Embracing causality in default reasoning. Artificial Intelligence,

35(2):259–271, 1988.

95

 https://www.openstreetmap.org
 https://www.openstreetmap.org

	Introduction
	Aims and Objectives

	Background and Context
	Recommender System Basics
	Types of Recommender System
	Recommendation for Groups
	Recommendation for Tourism

	Flickr Data for Tourism Recommendation
	Summary of Implications

	Overview of Recommendation Models
	City Recommendation
	Notation
	Problem Definition
	Ranking by Tourist-Tourist Similarity
	Ranking by City-City Similarity
	Ranking by Tourist-City Similarity
	Extension to Multi-Tourist Groups

	Point-of-interest Recommendation
	Notation
	Problem Definition
	Model Components
	Overall Popularity Feature
	Preference-aware Feature
	Context-aware Features
	History-aware Feature
	Scoring Methods
	Extension to Multi-Tourist Groups

	Creation of Travel Histories Dataset
	YFCC100M and OpenStreetMap
	Implementation Notes
	Data Preprocessing
	Visit Creation and Labelling
	Grouping Photos into Visits
	Obtaining POIs from OpenStreetMap
	Labelling Visits with POIs

	Label Bootstrapping via Word Likelihood Ratios
	Final Dataset
	Data Quality Assessment
	Manual Inspection
	Statistical Properties
	Comparison to Existing Dataset

	Application of Models to Dataset
	Implementation Notes
	Construction of Data Structures
	City Recommendation
	POI Recommendation
	Algorithmisation of Models
	City Recommendation
	POI Recommendation

	Evaluation and Optimisation Methods
	Evaluation Methods
	City Recommendation
	POI Recommendation

	Optimisation of Machine Learning Models for POI Scoring

	Results and Discussion
	City Recommendation
	Single-Tourist Results
	Group Results
	Summary of Findings

	POI Recommendation
	Optimisation Process
	Performance Comparison
	Correlation Analysis
	Performance Patterns
	Summary of Findings

	Conclusion
	Summary of Outcomes
	Summary of Contributions
	Areas for Improvement and Future Work

